Explanation:
#2.
A centigram is 1/100 of a gram, so that means a gram equals 100 centigrams.
Therefore you multiply 72.4 grams by 100/1 (or just 100), and get 7240 cg.
You did that one right but put the wrong unit in the answer. It is is cg ( centigrams).
#3.
1 liter is equal to 1000 milliliters, and I kiloliter is equal to 1000 liters. So one kiloliter is 1000*1000 milliliters or 1,000,000 milliliters.
The conversion factor would be
1/1000000
#4.
1 gigabyte is equal to 10^9 bytes.
I byte is equal to 10^9 bytes.
So 1 gigabyte is 10^9 * 10^9 nanobytes, or 10^18.
The conversion factor would be (1*10^18)/1.
Answer:
e. 3
Explanation:
In order to solve this problem we need to keep in mind the definition of pH:
As stated by the problem, the hydrogen ion concentration, [H⁺], is 1x10⁻³ M.
As all required information is available, we now can <u>calculate the pH</u>:
The correct option is thus e.
The required amount of silver nitrate to produce 16.2g of silver is 25.48 grams.
<h3>What is the relation between mass & moles?</h3>
Relation between the mass and moles of any substance will be represented as:
n = W/M, where
- W = given mass
- M = molar mass
Moles of silver = 16.2g / 107.8g/mol = 0.15mol
From the stoichiometry of the given reaction it is clear that, same moles of silver nitrate is required to produce same moles of silver. So 0.15 moles of silver nitrate is required.
Mass of silver nitrate = (0.15mol)(169.87g/mol) = 25.48g
Hence required mass of silver nitrate is 25.48g.
To know more about mass & moles, visit the below link:
brainly.com/question/19784089
#SPJ4
Answer:
Explanation:
1. Select all the statements about the nucleus of the atom that are correct:
Group of answer choices
B. It contains Protons
D. It has a Positive Charge
E. It contains Neutrons
2. An atom of an element with atomic number 50 and mass number 120 contains:
Group of answer choices
B. 50 protons, 50 electrons, and 70 neutrons
3. Which of these statements is false?
Group of answer choices
D. Electrons have the same mass as a proton but have the opposite charge.