The answer///////////b, 5 orbits
Answer: a rection will most likely occur if the colliding partilces have the proper orientation and energy.
The reactions occur becasue the molecules collide.
But not all the collisions result in a reaction.
The collisions have to meet some requirements.
Two of the basic requirements is that the collision has enough energy to overcome the activation energy and that the molecules collide in the riight way.
When two molecules react it is necessary that one element of one of the molecules interact when a specific element or group in the other molecule. That is the orientation must be the right one.
Collisions that to not have the proper orientation or enough energy will not cause reaction (changes in the bonds of the molecules).
Answer:
T =76.13 K
Explanation:
Given data:
Temperature of gas = ?
Volume of gas = 250 mL(250/1000 = 0.25 L)
Mass of helium = 0.40 g
Pressure of gas = 253.25 kpa (253.25/101 = 2.5 atm)
Solution:
Formula:
PV = nRT
First of all we will determine the number of moles of helium.
Number of moles = mass/ molar mass
Number of moles = 0.40 g/ 4 g/mol
Number of moles = 0.1 mol
Now we will put the values.
R = general gas constant = 0.0821 atm.L/ mol.K
T = PV/nR
T =2.5 atm× 0.25 L /0.1 mol ×0.0821 atm.L/ mol.K
T = 0.625 /0.00821/K
T =76.13 K
The H+ concentration in a solution =10^(-1.25)=0.05623413M
Answer: The correct answer is 1. outside and 2. inside.
Explanation:
During the resting potential (-70 mV), the concentration of Na+ is bigger outside than inside, so this situation generates a trend for moving inside. If we consider a scenario where the resting potential changes from -70 mV to +70 mV, we would realize that the electrical gradient would stop the entrance of Na+ ions and would make them to move outside.