Answer:
2+4 6(8)
Step-by-step explanation:
pls give brainliest
Answer:
a = 3
b = 2
c = 0
d = -4
Step-by-step explanation:
Form 4 equations and solve simultaneously
28 = a(2)³ + b(2)² + c(2) + d
28 = 8a + 4b + 2c + d (1)
-5 = -a + b - c + d (2)
220 = 64a + 16b + 4c + d (3)
-20 = -8a + 4b - 2c + d (4)
(1) + (4)
28 = 8a + 4b + 2c + d
-20 = -8a + 4b - 2c + d
8 = 8b + 2d
d = 4 - 4b
Equation (2)
c = -a + b + d + 5
c = -a + b + 4 - 4b+ 5
c = -a - 3b + 9
28 = 8a + 4b + 2c + d (1)
28 = 8a + 4b + 2(-a - 3b + 9) + 4 - 4b
28 = 6a - 6b + 22
6a - 6b = 6
a - b = 1
a = b + 1
220 = 64a + 16b + 4c + d (3)
220 = 64(b + 1) + 16b + 4(-b - 1 - 3b + 9) + 4 - 4b
220 = 60b + 100
60b = 120
b = 2
a = 2 + 1
a = 3
c = -3 - 3(2) + 9
c = 0
d = 4 - 4(2)
d = -4
Put 40y and 25.5
Step-by-step explanation:
I js did it lol
Answer:
2and19/90
Step-by-step explanation:
-2/3*3/5= _2/5
-2/5+5/2-(2/3×1/6)
-2/5+5/2-1/9
21/10-1/9
=199/90
=2/19/90
Answer/Step-by-step explanation:
✔️Find EC using Cosine Rule:
EC² = DC² + DE² - 2*DC*DE*cos(D)
EC² = 27² + 14² - 2*27*14*cos(32)
EC² = 925 - 756*cos(32)
EC² = 283.875639
EC = √283.875639
EC = 16.85 cm
✔️Find the area of ∆DCE:
Area = ½*14*27*sin(32)
Area of ∆DCE = 100.15 cm²
✔️Since ∆DCE and ∆ABE are congruent, therefore,
Area of ∆ABE = 100.15 cm²
✔️Find the area of the sector:
Area of sector = 105/360*π*16.85²
Area = 260.16 cm² (nearest tenth)
✔️Therefore,
Area of the logo = 100.15 + 100.15 + 260.16 = 460.46 ≈ 460 cm² (to 2 S.F)