The answer to this question is A
<h3>
Answer:</h3>
25.4 g CH₄
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
1.58 mol CH₄
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of C - 12.01 g/mol
[PT] Molar Mass of H - 1.01 g/mol
Molar Mass of CH₄ - 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
25.359 g CH₄ ≈ 25.4 g CH₄
It is A because it has a lower activation emery than like B
The shape of the H2O molecule is a Bent Triatomic.
It isn't symmetrical.
The H2O molecule is polar.
Answer:
1.89 g CaCO₃
Explanation:
You will have to use stoichiometry for this question. First, look at the chemical equation.
Na₂CO₃ + CaCl₂ ==> 2 NaCl + CaCO₃
From the above equation, you can see that for one mole of Na₂CO₃, you will produce one mole of CaCO₃. This means that however many moles of Na₂CO₃ you have in the beginning, you will have the same amount of moles of CaCO₃, theoretically speaking.
So, convert grams to moles. You should get 0.0189 mol Na₂CO₃. This means that you will get 0.0189 mol CaCO₃. I'm not sure what units you want the answer in, but I'm going to give it in grams. Convert moles to grams. Your answer should be 1.89 g.