Use the density to convert volume into mass.
since the density is in g/ml and the volume was given in Liters, we need to first convert the Liters into mililiters. just multiply by 1000 or move the decimal three times.
0.1200 Liters= 120.0 mL
120.0 mL (0.8787 grams/ 1 mL)= 105 grams
Molecular equation
Hg₂(NO₃)₂ (aq) + KI(aq) ⇒Hg₂I₂(s) + 2KNO₃(aq)
Total Ionic equation
Hg²⁺(aq) + 2NO³⁻(aq) + 2K⁺aq) ⇒Hg₂I₂(s) + 2K⁺(aq) + NO³⁻ (aq)
Net Ionic equation
Hg²⁺(aq) + 2I⁻(aq) ⇒ Hg₂I₂(s)
<h3>What is the molecular equation?</h3>
Sometimes, a balanced equation is all that is used to refer to a chemical equation. Any ionic substances or acids are represented using their chemical formulas as neutral compounds in a molecular equation. Each substance's state is described in parenthesis after the formula. A complete ionic equation also contains the spectator ions, whereas a net ionic equation just displays the chemical species that are involved in a reaction.
The steps listed below can be used to determine the net ionic equation for a specific reaction:
Include the states of each chemical in the balanced molecular equation for the reaction.
To know more about the molecular equation, visit:
brainly.com/question/14286552
#SPJ4
Answer:
102g of crystals
Explanation:
When the Cr(NO₃)₃⋅9H₂O is dissolved in water at 15°C, the maximum mass that water will dissolve in the equilibrium is 208 g per 100g of water. When you heat the water, this mass will increases.
In this problem, at 35°C the water dissolves 310g in 100g of water, as in the equilibrium at 15°C the maximum mass is 208g, the mass of crystals that will form is:
310g - 208g = <em>102g of crystals</em>
<em>-Crystals are the Cr(NO₃)₃⋅9H₂O that is not dissolved-.</em>
I hope it helps!