Answer:
Given expression: 6(2b-4). To find the value of 6(2b-4) at b= 5, we need to substitute the b=5 in the expression, we get….Therefore, the value of 6(2b-4) is 36, when b=5.
Explanation:
Given expression: 6(2b-4). To find the value of 6(2b-4) at b= 5, we need to substitute the b=5 in the expression, we get….Therefore, the value of 6(2b-4) is 36, when b=5.
Answer:
No this statement is false.
Explanation:
when an atom lose or gain the electron ions are formed. If the atom lose an electron the positive ions are formed called cations while anion is formed by the gaining of electron by an atom The elements having less electrons in valance shell usually lose their electrons while the elements like halogens having 7 valance electrons gain an electron to complete the octet. while p block elements noble gases are inert, their outer most valance shell is complete so they do not form ions.
P block elements are non-metals, metals and metalloids. These are thirty five elements. The P-block elements are present on right side of periodic table. There valance electrons are present in P orbital. The p-block metals are shiny and good conductor of heat and electricity. These metal lose the electron which is accept by non metals and form ionic bond. They have high melting points.
Metalloids includes boron, silicon, germanium, arsenic, antimony and tellurium. Metalloids contain both the properties of metals and non metals, Some metalloids are toxic like arsenic.
Most of p-block elements are non metals. They are bad conductor of heat and electricity and have low boiling points. The non metals mostly accept the electron from the metals and usually from ionic bond like in case of chlorine. It form the ionic compound with sodium.
The sodium chloride which is an ionic compound, formed by the complete transfer of electron from sodium to chlorine atom and form ionic bond. In this ionic compound sodium carry positive charge and chlorine carry negative charge there is attraction between these oppositely charged atoms.
Answer:
Ionization energy increases going left to right across a period and increases from bottom to top in a group
Electron affinity increases when going up a group
If we are excluding noble gases (aka group 8/18), Chlorine is the element that has the greatest electron affinity. This is because Fluorine's 2p orbital is limited and packed which doesn't quite allow sharing of the orbital with extra electrons easily, while Chlorine has a 3p orbital allowing more space for electrons, where the orbital electrons would be inclined to do so.
Helium is the element with the greatest ionization energy since it's at the top and energy (from Oganesson to Helium) increases when going across a period (from Hydrogen to Helium).
The accepted model of an atom was made by Schrodinger, which is known as the quantum mechanical model. Unlike Bohr's model, electrons are represented as a cloud and not small balls orbiting the nucleus. There is no define path of electrons in Schrodinger's model, but it can predict the odds of where an electron is located.
The answer to your question is then Electrons form a cloud around the nucleus.
I attached the working and the answer to the question below.
Please note that in the formula, C = speed of light, ν = frequency, λ= wavelength
<span>
The wavelength of a 2.80 Hz wave is
1.07 </span>
× 10¹⁰
cm.