Answer:
If temperature increases, as it does in most reactions, a chemical change is likely to be occurring. This is different from the physical temperature change. During a physical temperature change, one substance, such as water is being heated.
Explanation:
Answer:
0.825 M
Explanation:
The osmotic pressure is a colligative property, that can be calculated using the following expression.
π = M × R × T
where,
π is the osmotic pressure
M is the molarity
R is the ideal gas constant
T is the absolute temperature (24°C + 273 = 297 K)
M = π / R × T = 20.1 atm / (0.08206 atm.L/mol.K) × 297 K = 0.825 M
After 25 days, it remains radon 5.9x10^5 atoms.
Half-life is the time required for a quantity (in this example number of radioactive radon) to reduce to half its initial value.
N(Ra) = 5.7×10^7; initial number of radon atoms
t1/2(Ra) = 3.8 days; the half-life of the radon is 3.8 days
n = 25 days / 3.8 days
n = 6.58; number of half-lifes of radon
N1(Ra) = N(Ra) x (1/2)^n
N1(Ra) = 5.7×10^7 x (1/2)^6.58
N1(Ra) = 5.9x10^5; number of radon atoms after 25 days
The half-life is independent of initial concentration (size of the sample).
More about half-life: brainly.com/question/1160651
#SPJ4
Answer: An electron will jump to a higher energy level when excited by an external energy gain such as a large heat increase or the presence of an electrical field, or collision with another electron.
Explanation: