A hydrocarbon with three or more consecutive (cumulative) double bonds is known as a cumulene. They are analogous to allenes, only exhibiting a more elongated chain. The basic molecule in this category is butatriene, which is also simply known as cumulene.
In the structure of a cumulene, there are 3 double bonds and 4 single bonds. The double bond comprises 1 sigma bond, and 1 pi bond and 4 hydrogen bond produces a sigma bond with carbon. Thus, the molecule of cumulene comprises 7 sigma bonds and 3 pi bonds.
Fifty percent. plz brainliest my answer
Answer:
<u>= 2.2 g pf S. produced</u>
Explanation:
Balanced Reaction equation:
→ 
1 mole of H2S - 34.1g
? moles - 3.2g
= 3.2/34.1 =<u> 0.09 moles of H2S</u>
Also,
1 mole of S02 - 64.07 g
? moles - 4.42g
= 4.42/64.07 <u>= 0.069 moles of SO2</u>
<u />
<em>Meaning SO2 is the limiting reagent</em>
Finally, 3 moles of S - 32g of sulphur
0.069 mole = ? g of Sulphur
= 0.069 x 32
<u>= 2.2 g pf S.</u>
Answer:
The volume of the stock solution needed is 1L
Explanation:
Step 1:
Data obtained from the question. This include the following:
Concentration of stock solution (C1) = 6M
Volume of stock solution needed (V1) =?
Concentration of diluted solution (C2) = 1M
Volume of diluted solution (V2) = 6L
Step 2:
Determination of the volume of the stock solution needed.
With the dilution formula C1V1 = C2V2, the volume of the stock solution needed can be obtained as follow:
C1V1 = C2V2
6 x V1 = 1 x 6
Divide both side by 6
V1 = 6/6
V1 = 1L
Therefore, the volume of the stock solution needed is 1L
Answer:
baby which question you want to answer me