The specific heat of the metal, given the data from the question is 0.60 J/gºC
<h3>Data obtained from the question </h3>
The following data were obtained from the question:
- Mass of metal (M) = 74 g
- Temperature of metal (T) = 94 °C
- Mass of water (Mᵥᵥ) = 120 g
- Temperature of water (Tᵥᵥ) = 26.5 °C
- Equilibrium temperature (Tₑ) = 32 °C
- Specific heat capacity of the water (Cᵥᵥ) = 4.184 J/gºC
- Specific heat capacity of metal (C) =?
<h3>How to determine the specific heat capacity of the metal</h3>
The specific heat capacity of the sample of gold can be obtained as follow:
According to the law of conservation of energy, we have:
Heat loss = Heat gain
MC(T –Tₑ) = MᵥᵥC(Tₑ – Tᵥᵥ)
74 × C(94 – 32) = 120 × 4.184 (32 – 26.5)
C × 4588 = 2761.44
Divide both side by 4588
C = 2761.44 / 4588
C = 0.60 J/gºC
Thus, the specific heat capacity of the metal is 0.60 J/gºC
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1
- The density of the mineral fragment is
(20.47 g/cm3).
- Density can be regarded as<em> ratio of mass to the volume </em>of the object.
Density = (mass/ volume)
Given:
volume of mineral fragments= 2.57 cm3
mass = 52.6 g
density of the mineral fragment = (52.6/2.57)
= 20.47 g/cm3
- Therefore, density of the mineral fragment is (20.47 g/cm3)
Learn more at: brainly.com/question/13594966
Density of liquid=
.
so, density of liquid=
= 1.2 gm/cm³.
Answer:
The mass left after 24.6 years is 25.0563 grams
Explanation:
The given parameters are;
The mass of the hydrogen-3 = 100 grams
The half life of hydrogen-3 which is also known as = 12.32 years
The formula for calculating half-life is given as follows;

Where;
N(t) = The mass left after t years
N₀ = The initial mass of the hydrogen-3 = 100 g
t = Time duration of the decay = 24.6 years
= Half-life = 12.32 years

The mass left after 24.6 years = 25.0563 grams.
Answer:
23 moles
Explanation:
Given data:
number of moles of propane = 7.5 mol
Number of moles of carbon dioxide produced = ?
Solution:
Chemical equation:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
Now we will compare the moles of propane and carbon dioxide.
C₃H₈ : CO₂
1 : 3
7.5 : 3/1×7.5 = 22.5
22.5≅ 23 moles