Answer:
Explanation:
1) Vanadium (IV) → V⁺⁴
Carbonate → CO₃⁻²
So , Vanadium (IV) Carbonate = V₂(CO₃)₄ or V(CO₃)₂
2) Tin (II) = Sn⁺²
Nitrite = NO₂⁻
So, Tin (II) Nitrate = Sn(NO₂)₂
3) Cobalt (III) = Co⁺³
Oxide = O⁻²
So , Cobalt (III) Oxide = Co₂O₃
4) Titanium (II) = Tn⁺²
Acetate = CH₃COO⁻
So , Titanium (II) Acetate = Tn(CH₃COO)₂ or Tn(C₂H₃O₂)₂
5) Vanadium (V) = V⁺⁵
Sulfide = S⁻²
So , Vanadium (V) Sulfide = V₂S₅
6) Chromium (III) = Cr⁺³
Hydroxide = OH⁻
So , Chromium (III) Hydroxide = Cr(OH)₃
7) Lithium = Li⁺
Iodide = I⁻
So , Lithium Iodide = LiI
8) Lead (II) = Pb⁺²
Nitride = N⁻³
So , Lead (II) Nitride = Pb₃N₂
9) Silver = Ag⁺
Bromide = Br⁻
So , Silver Bromide = AgBr
Considering a reaction:
A → B
The rate equation may be described as:
r = -k[A]ⁿ
Taking the natural log,
ln(r) = -nln([A]) + ln(k)
Therefore, the only time the graph of ln[A] vs time will be a straight line is when the order of the reaction is 0, meaning the reaction is independent of reactant concentration.
Answer : The balanced chemical reaction will be,

Explanation :
Balanced chemical reaction : It is defined as the reaction in which the number of atoms of individual elements present on reactant side must be equal to the product side.
If the amount of atoms of each type on the left and right sides of a reaction differs then to balance the equation by adding coefficient in the front of the elements or molecule or compound in the chemical equation.
The coefficient tell us about that how many molecules or atoms present in the chemical equation.
The given chemical reaction is,

This reaction is an unbalanced chemical reaction because in this reaction number of hydrogen bromine atoms are not balanced.
In order to balance the chemical equation, the coefficient '2' put before the
and we get the balanced chemical equation.
The balanced chemical reaction will be,

Answer:
V = 0.798 L
Explanation:
Hello there!
In this case, for this gas stoichiometry problem, we first need to compute the moles of carbon dioxide via stoichiometry and the molar mass of starting calcium carbonate:

Next, we use the ideal gas equation for computing the volume, by bearing to mind that the STP conditions stand for a pressure of 1 atm and a temperature of 273.15 K:

Best regards!