Answer:
V = 22.34 L
Explanation:
Given data:
Volume of O₂ needed = ?
Temperature and pressure = standard
Number of molecules of water produced = 6.0× 10²³
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of water:
1 mole contain 6.022× 10²³ molecules
6.0× 10²³ molecules × 1 mole / 6.022× 10²³ molecules
0.99 mole
Now we will compare the moles of oxygen and water.
H₂O : O₂
2 : 1
0.996 : 0.996
Volume of oxygen needed:
PV = nRT
V = nRT/P
V = 0.996 mol × 0.0821 atm.L/mol.K × 273.15 K / 1 atm
V = 22.34 L
Answer:
The mass of ascorbic acid in 2.87×10−4 mol are 50,5 mg
Explanation:
Molar mass = 176 g/mol
Moles . molar mass = grams.
2,87 x10*-4 m . 176 g/m = 50,5 x10*-3 grams
A human can take one sweet lime and half to cover the daily requirement of vitamin C. =)
Answer:
The chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Explanation:
Chemical equation:
Cl₂(g) + KBr (aq) → KCl (aq) + Br₂(l)
Balanced chemical equation:
Cl₂(g) + 2KBr (aq) → 2KCl (aq) + Br₂(l)
This equation showed that the chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Chlorine is more reactive than bromine it displace the bromine from potassium and form potassium chloride solution.
The given equation is balanced and completely hold the law of conservation of mass.
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.