4. The point Z is the orthocenter of the triangle.
5. The length of GZ is of 9 units.
6. The length of OT is of 9.6 units.
<h3>What is the orthocenter of a triangle?</h3>
The orthocenter of a triangle is the point of intersection of the three altitude lines of the triangle.
Hence, from the triangle given in the end of the answer, point Z is the orthocenter of the triangle.
For the midpoints connected through the orthocenter, the orthocenter is the midpoint of these segments, hence:
- The length of segment GZ is obtained as follows: GZ = 0.5 GU = 9 units. -> As z is the midpoint of the segment.
- The length of segment OT is obtained as follows: OT = 2ZT = 2 x 4.8 = 9.6 units.
<h3>Missing Information</h3>
The complete problem is given by the image at the end of the answer.
More can be learned about the orthocenter of a triangle at brainly.com/question/1597286
#SPJ1
Answer:
Answer: LCM of 20,35 and 50 is 1400
Step-by-step explanation:
if you need to simply 12/ c^-8 d^2=
=12 c^8/d^2
is the third choice
Here you go, let me know if you have a question about the steps
Answer:
- 6.56- 6.6
- 6.723- 6.7
- 6.538- 6.5
- 6.647- 6.6
- 6.49- 6.5
- 6.687- 6.7
<em>Hope this helps and would appreciate if you would add me as brainiest</em>