Step-by-step explanation:
please complete your question
Hey there
__________
The correct answer is
Whatever each CD costs, what each person paid is that cost times the number of CDs purchased (no sales tax for this problem).
So, the price of one CD is a factor of $66 (a number of $ that divides $66 evenly).
In theory, it could be $1, $2, $3, $6, $11, $22, $66.
It could even be $0.50, $0.25, $0.20, $0.10, $0.05,...
Also, the price of one CD must be a factor of $54. such as $54,$27,$18,$9,$6,$3,$2,$1,... .
You are looking for the most that price could be.
The grew greatest price that is in both lists is $6.
How can you make those lists?
You can start with the total price, then the price divided by 2, by 3, by whatever whole number you can divide it.
Otherwise, you could find the greatest common factor of 66 and 54
from the prime factorization of both numbers.
___________________
Hope this helps you
Answer:
The top right option.
Step-by-step explanation:
divide it two numbers to get 11.090909 which would most likely to be 11.10
Answer:
9 terms
Step-by-step explanation:
Given:
1, 8, 28, 56, ..., 1
Required
Determine the number of sequence
To determine the number of sequence, we need to understand how the sequence are generated
The sequence are generated using
![\left[\begin{array}{c}n&&r\end{array}\right] = \frac{n!}{(n-r)!r!}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dn%26%26r%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7Bn%21%7D%7B%28n-r%29%21r%21%7D)
Where n = 8 and r = 0,1....8
When r = 0
![\left[\begin{array}{c}8&&0\end{array}\right] = \frac{8!}{(8-0)!0!} = \frac{8!}{8!0!} = 1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%260%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-0%29%210%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B8%210%21%7D%20%3D%201)
When r = 1
![\left[\begin{array}{c}8&&1\end{array}\right] = \frac{8!}{(8-1)!1!} = \frac{8!}{7!1!} = \frac{8 * 7!}{7! * 1} = \frac{8}{1} = 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-1%29%211%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B7%211%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%21%7D%7B7%21%20%2A%201%7D%20%3D%20%5Cfrac%7B8%7D%7B1%7D%20%3D%208)
When r = 2
![\left[\begin{array}{c}8&&2\end{array}\right] = \frac{8!}{(8-2)!2!} = \frac{8!}{6!2!} = \frac{8 * 7 * 6!}{6! * 2 *1} = \frac{8 * 7}{2 *1} =2 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%262%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-2%29%212%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B6%212%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%21%7D%7B6%21%20%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%7D%7B2%20%2A1%7D%20%3D2%208)
When r = 3
![\left[\begin{array}{c}8&&3\end{array}\right] = \frac{8!}{(8-3)!3!} = \frac{8!}{5!3!} = \frac{8 * 7 * 6 * 5!}{5! *3* 2 *1} = \frac{8 * 7 * 6}{3 *2 *1} = 56](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%263%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-3%29%213%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B5%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%21%7D%7B5%21%20%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%7D%7B3%20%2A2%20%2A1%7D%20%3D%2056)
When r = 4
![\left[\begin{array}{c}8&&4\end{array}\right] = \frac{8!}{(8-4)!4!} = \frac{8!}{4!3!} = \frac{8 * 7 * 6 * 5 * 4!}{4! *4*3* 2 *1} = \frac{8 * 7 * 6*5}{4*3 *2 *1} = 70](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%264%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-4%29%214%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B4%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%20%2A%204%21%7D%7B4%21%20%2A4%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%2A5%7D%7B4%2A3%20%2A2%20%2A1%7D%20%3D%2070)
When r = 5
![\left[\begin{array}{c}8&&5\end{array}\right] = \frac{8!}{(8-5)!5!} = \frac{8!}{5!3!} = \frac{8 * 7 * 6 * 5!}{5! *3* 2 *1} = \frac{8 * 7 * 6}{3 *2 *1} = 56](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%265%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-5%29%215%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B5%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%21%7D%7B5%21%20%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%7D%7B3%20%2A2%20%2A1%7D%20%3D%2056)
When r = 6
![\left[\begin{array}{c}8&&6\end{array}\right] = \frac{8!}{(8-6)!6!} = \frac{8!}{6!2!} = \frac{8 * 7 * 6!}{6! * 2 *1} = \frac{8 * 7}{2 *1} = 28](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-6%29%216%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B6%212%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%21%7D%7B6%21%20%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%7D%7B2%20%2A1%7D%20%3D%2028)
When r = 7
![\left[\begin{array}{c}8&&7\end{array}\right] = \frac{8!}{(8-7)!7!} = \frac{8!}{7!1!} = \frac{8 * 7!}{7! * 1} = \frac{8}{1} = 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%267%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-7%29%217%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B7%211%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%21%7D%7B7%21%20%2A%201%7D%20%3D%20%5Cfrac%7B8%7D%7B1%7D%20%3D%208)
When r = 8
![\left[\begin{array}{c}8&&8\end{array}\right] = \frac{8!}{(8-8)!8!} = \frac{8!}{8!0!} = 1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%268%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-8%29%218%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B8%210%21%7D%20%3D%201)
The full sequence is: 1,8,28,56,70,56,28,8,1
And the number of terms is 9