Answer:
c) H2O and OH−
Explanation:
Acids are the species which furnish hydrogen ions in the solution or is capable of forming bonds with electron pair species as they are electron deficient species.
When an acid donates a proton, it changes into a base which is known as its conjugate base.
Bases are the species which furnish hydroxide ions in the solution or is capable of forming bonds with electron deficient species as they are electron rich species. When a base accepts a proton, it changes into a acid which is known as its conjugate acid.
The acid and the base which is only differ by absence or presence of the proton are known as acid conjugate base pair.
Thus, for the reaction,

The base is
and the conjugate acid of the base is
.
Also, The base is
and the conjugate acid of the base is
.
<u>Correct option is :- c) H2O and OH−</u>
The correct answer will be b
Answer:
Option d.
1 mole AlCl3in 500 g water
Explanation:
ΔT = Kf . m . i
Freezing T° of solution = - (Kf . m . i)
In order to have the lowest freezing T° of solution, we need to know which solution has the highest value for the product (Kf . m . i)
Kf is a constant, so stays the same and m stays also the same because we have the same moles, in the same amount of solvent. In conclussion, same molality to all.
i defines everything. The i refers to the Van't Hoff factor which are the number of ions dissolved in solution. We assume 100 & of ionization so:
a. Glucose → i = 1
Glucose is non electrolytic, no ions formed
b. MgF₂ → Mg²⁺ + 2F⁻
i = 3. 1 mol of magnessium cation and 2 fluorides.
c. KBr → K⁺ + Br⁻
i = 2. 1 mol potassium cation and 1 mol of bromide anion
d. AlCl₃ → Al³⁺ + 3Cl⁻
i = 4. 1 mol of aluminum cation and 3 mol of chlorides.
Kf . m . 4 → option d will has the highest product, therefore will be the lowest freezing point.
Start of the food chain, one of the keys to survival and, one of the most natural beauties
Question: The question is incomplete. Below is the complete question and the answer;
While ethanol (CH3CH2OH is produced naturally by fermentation, e.g. in beer- and wine-making, industrially it is synthesized by reacting ethylene CH2CH2) with water vapor at elevated temperatures. A chemical engineer studying this reaction fills a 50.0 L tank at 22. °C with 24. mol of ethylene gas and 24. mol of water vapor. He then raises the temperature considerably, and when the mixture has come to equilibrium determines that it contains 15.4 mol of ethylene gas and 15.4 mol of water vapor The engineer then adds another 12. mol of water, and allows the mixture to come to equilibrium again. Calculate the moles of ethanol after equilibrium is reached the second time. Round your answer to 2 significant digits.
Answer:
Number of moles of ethanol = 11 mol
Explanation:
SEE THE ATTACHED FILE FOR THE CALCULATION