Answer:
Flowers play a crucial role in our lives; they have been used for generations to express the thoughts and feelings words cannot fully explain. Mother nature is the short term used to describe how nature gives life and nurture as a mother does for her children. As humans, we are part of mother nature's plan. We are also connected to plants and flowers, and some of the benefits have been passed to the next generation and will always be. We can control the air that we breathe, the aura around us, how we feel, and the things we attract in life. Other than only gifting your loved ones with flowers on special occasions, you can make the best and lasting impressions on your loved ones with a flower plant gift. This gesture shows that you understand how flowers are important in our life. To shed light on the importance of flowers in our life, here is a blog that will give five importance of flowers
Answer:
Whether something is a molecule or not depends on the type of bond that is formed when its atoms join together. In general, electrons can be shared between atoms (a molecular bond) or electrons can be completely removed from one atom and given to another (an ionic bond). Molecules have molecular bonds.
Alkenes on reacting with ozone results in the formation of ozonide which undergo reductive cleavage in presence of dimethyl sulfide to form carbonyl compounds (aldehyde or ketone). Whereas in presence of hydrogen peroxide it undergoes oxidative cleavage to form carboxylic acids or ketones.
Since, A alkene yields 4-heptanone only on treatment with ozone and DMS thus, it implies that both the chains on the side of the double-bond are similar the product is 4-heptanone that means the double bond is present between the chains at the 4th carbon. Therefore the structure of compound A is 4,5-dipropyloct-4-ene.
The reaction is as shown in the image.
The reaction of A with m-CPBA (meta-perchlorobenzoic acid) followed by aqueous acid
is shown in the image.
m-CPBA (meta-perchlorobenzoic acid) is a peracid and forms epoxides on reacting with alkenes.
<h3><u>Answer;</u></h3>
<u>= 5 M or 5 moles/liter</u>
<h3><u>Explanation;</u></h3>
At point E, 90 g of substances X are dissolved in 100 g of the solvent.
100g of the solvent is equal to 100 ml
Molarity is the number of moles of a substance in one liter of a solvent.
90 g of X are in 100 ml
But; the RFM of X = 180 g/l
Therefore; the moles of X in 90 g = 90/180
= 0.5 moles
Therefore;
0.5 moles of X are contained in 100 ml of the solvent;
Thus, molarity = 0.5 × 1000/100
=<u> 5 M or 5 moles/liter</u>