Answer:
1. A1, B2, C3
2. 47.1°
Explanation:
Sum of forces in the x direction:
∑Fₓ = ma
f − Fᵥᵥ = 0
f = Fᵥᵥ
Sum of forces in the y direction:
∑Fᵧ = ma
N − W = 0
N = W
Sum of moments about the base of the ladder:
∑τ = Iα
Fᵥᵥ h − W (b/2) = 0
Fᵥᵥ h = ½ W b
Fᵥᵥ (l sin θ) = ½ W (l cos θ)
l Fᵥᵥ sin θ = ½ l W cos θ
The correct set of equations is A1, B2, C3.
At the smallest angle θ, f = Nμ. Substituting into the first equation, we get:
Nμ = Fᵥᵥ
Substituting the second equation into this equation, we get:
Wμ = Fᵥᵥ
Substituting this into the third equation, we get:
l (Wμ) sin θ = ½ l W cos θ
μ sin θ = ½ cos θ
tan θ = 1 / (2μ)
θ = atan(1 / (2μ))
θ = atan(1 / (2 × 0.464))
θ ≈ 47.1°
Answer:
The intensity level in the room is 63 dB
Explanation:
To calculate the intensity of sound in the room, we use the equation of definition of decibels
β = 10 log (I / Io) (1)
With “I” the sound intensity and “Io” the threshold intensity 1.0 10⁻⁻¹² W/m²
To calculate the intensity we will use the initial data and remember the power of the emitted sound is constant, in addition that the sound propagates in three-dimensional form or on a spherical surface
I = P/A ⇒ P = I A
The area of a sphere is 4 π r², where I can calculate of 1
β/10 = log (I/Io)
I / Io =
I = Io
I = 1 10⁻¹² 10⁽¹⁰⁰/¹⁰⁾ = 1 10⁻¹² 10¹⁰
I = 1.0 10⁻² W
With this we can calculate the intensity for a distance of 20 m
I = 1.0 10⁻² / ( 4π 20²)
I = 2.0 10⁻⁶ W/m²
We have already found the intensity at the point of interest, so we can calculate the intensity in decibels at this point with equation 1
β = 10 log(2.0 10⁻⁶ / 1.0 10⁻¹²)
β = 10 log ( 2 10⁶) = 10 6.3
β = 63 dB
The intensity level in the room is 63 dB
Because the object is still made of the same material
Density is not affected by the weight and shape of an object its affected by how concentrated the atoms are in a given volume
Answer:
u= 20.09 m/s
Explanation:
Given that
m = 0.02 kg
M= 2 kg
h= 0.2 m
Lets take initial speed of bullet = u m/s
The final speed of the system will be zero.
From energy conservation
1/2 m u²+ 0 = 0+ (m+M) g h
m u²=2 (m+M) g h
By putting the values
0.02 x u² = 2 (0.02+2) x 10 x 0.2 ( take g=10 m/s²)
u= 20.09 m/s