Answer:
a) 141.6m
b) 8.4m/s
Explanation:
a) to find the total displacement you use the following formula for each trajectory. Next you sum the results:

hence, the total distance is 141.6m
b) the mean velocity of the total trajectory is given by:

hence, the mean velocity is 8.4 m/s
Moment of inertia of single particle rotating in circle is I1 = 1/2 (m*r^2)
The value of the moment of inertia when the person is on the edge of the merry-go-round is I2=1/3 (m*L^2)
Moment of Inertia refers to:
- the quantity expressed by the body resisting angular acceleration.
- It the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
The moment of inertia of single particle rotating in a circle I1 = 1/2 (m*r^2)
here We note that the,
In the formula, r being the distance from the point particle to the axis of rotation and m being the mass of disk.
The value of the moment of inertia when the person is on the edge of the merry-go-round is determined with parallel-axis theorem:
I(edge) = I (center of mass) + md^2
d be the distance from an axis through the object’s center of mass to a new axis.
I2(edge) = 1/3 (m*L^2)
learn more about moment of Inertia here:
<u>brainly.com/question/14226368</u>
#SPJ4
Answer:
Because it is being stopped by another person
Answer:
Water is very different from honey, syrup, glycerine, or oil. It pours easily and is not thick and sticky like the others. The property that determines how easily a liquid pours is called VISCOSITY. Water has a low viscosity; syrup has a high viscosity. Liquids with a high viscosity are said to be viscous.
Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that electric field intensity due to some given charge distribution is given as

now electric flux through a spherical surface of radius r is given as


now by Guass law we know that


now volume charge density is given as


Part b)
Total charge inside the radius R is given as
