Answer:
Dy = 111.66 [m]
t = 3.5 [s]
Explanation:
To solve this problem we must use the equations of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity = 27 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time = 3.5 [s]
Note: The negative sign of the equation means that the gravity acceleration goes in opposite direction
Vf = 27 - (9,81*3,5)
Vf = - 7.33 [m/s] (this negative sign indicates that at this moment the snowball is going downwards)
To find how high the snowball was we must use the following equation:

Dy = (27*3.5) + (0.5*9.81*3.5)
Dy = 94.5 + (17.16)
Dy = 111.66 [m]
<span>On the y-axis (the bottom of the table) hope this helps</span>
The Answer is B. Isotopes
Answer: The mass of the sculpture is 11.8kg
Explanation:
Using the equation of fundamental frequency of a taut string.
f = (1/2L)*√(T/μ) .... (Eqn1)
Where
f= frequency in Hertz =80Hz
T = Tension in the string = Mg
M represent the mass of the substance (sculpture) =?
g= 9.8m/s^2
L= Length of the string=90cm=0.9m
μ= mass density = mass of string /Length of string
mass of string =5g=0.005kg
L=0.9m
μ=0.005/0.9 = 0.0056kg/m
Using (Eqn1)
80= 1/(2*0.9) √(T/0.0056)
144= √(T/0.0056)
Square both sides
20736= T/0.0056
T= 116.12N
Recall that T =Mg
116.12= M * 9.8
M=116.12/9.8
M= 11.8kg
Therefore the mass of the sculpture is 11.8kg