1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
3 years ago
7

A 1.31 kg object is attached to a horizontal spring of force constant 2.70 N/cm and is started oscillating by pulling it 6.20 cm

from its equilibrium position and releasing it so that it is free to oscillate on a frictionless horizontal air track. You observe that after eight cycles its maximum displacement from equilibrium is only 3.70 cm.
(a) How much energy has this system lost to damping during these eight cycles?
(b) Where did the "lost" energy go? Explain physically how the system could have lost energy.
Physics
1 answer:
goldfiish [28.3K]3 years ago
6 0

Answer:

The answer is below

Explanation:

a) The change in energy is the difference between the final energy and the initial energy.

ΔE (energy change) = Ef (final energy) - Ei (initial energy)

\Delta E=\frac{1}{2}kA_f^2 -\frac{1}{2}kA_i^2\\\\k=force\ constant=2.7\ N/cm=270\ N/m, A_f=final\ dispalacment= 3.7\ cm=0.037\ m,\\ A_i=initial \ displacement = 6.2\ cm=0.062\ m\\\\Hence:\\\\\Delta E=\frac{1}{2}(270)(0.037)^2 -\frac{1}{2}(270)(0.062)^2\\\\\Delta E=-0.334 \ J

The negative sign shows that energy is lost to the environment. Hence 0.334 J is lost to the environment.

b) According to the law of conservation of energy, energy cannot be created or destroyed but transformed from one form to another.

The oscillating object loses energy due to wind resistance, friction between the spring and the object. Given that the air is frictionless, hence the energy loss is due to friction which is converted to heat.

You might be interested in
Ahmad is riding his bicycle. He finds that he can accelerate from rest at 0.44 m/s^2 for 5 s to reach a speed of 2.2 m/s. The to
snow_lady [41]

Answer:

1) The force Christian can exert on his bicycle before picking up the the cargo is 529.74 N

2) The force Christian can exert on his bicycle after picking up the the cargo is 647.46 N

Therefore, Christian has to exert more force on his bike after picking up the cargo

Explanation:

The given parameters are;

The mass of Christian and his bicycle = 54 kg

The mass of the cargo = 12 kg

1) The force Christian can exert on his bicycle before picking up the the cargo = Mass of Christian and his bicycle × Acceleration due to gravity

∴ The force Christian can exert on his bicycle before picking up the the cargo = 54 kg × 9.81 m/s² = 529.74 N

2) The force Christian can exert on his bicycle after picking up the the cargo = (54 + 12) kg × 9.81 m/s² = 647.46 N

Therefore, Christian has to exert more force on his bike after picking up the cargo.

7 0
2 years ago
What is your acceleration while sitting in your chair. the latitude of corvallis is 44.4˚.?
marta [7]
 <span>You can start with the equations you know 

a=v^2/r = (2pi*r/T)^2/r = 4pi^2r/T^2 

Radius of earth (R) = 6378.1 km 
Time in one day (T) = 86400 seconds 
Latitude = 44.4 degrees 

If you draw a circle and have the radius going out at a 44.4 degree angle above the center you can then find the r. 

r=Rcos(44.4) 
r=6378.1cos(44.4) 
r= 4556.978198 km or 4556978 m 

Now you can plug this value into the acceleration equation from above... 

a= 1.8*10^8/7.47*10^9 
a= .0241 m/s^2 </span>
8 0
3 years ago
a boy steps off the end of a high diving board and drops into the water below. it takes the boy 0.78 seconds to reach the water.
tino4ka555 [31]

Answer:

7.644 feet

Explanation:

Free fall means that an object is falling freely with no forces acting upon it except gravity, a defined constant, g = -9.8 m/s2. The distance the object falls, or height, h, is 1/2 gravity x the square of the time falling.

5 0
2 years ago
Part complete during a collision with a wall, the velocity of a 0.200-kg ball changes from 20.0 m/s toward the wall to 12.0 m/s
Inga [223]

The average force applied to the ball= 106.7 N

Explanation:

Force is given by

f= ΔP/t

ΔP= change in momentum= m Vf- m Vi

m= mass =0.2 kg

Vf= final velocity= 12 m/s

Vi=initial velocity= -20 m/s ( negative because it is going towards the wall which is treated as negative axis)

t= time= 60 ms= 0.06 s

now ΔP= 0.2 [ 12-(-20)]

ΔP=0.2 (32)=6.4 kg m/s

now force F= ΔP/t

F= 6.4/0.06

F=106.7 N

8 0
3 years ago
A plane has a cruising speed of 250 miles per hour when there is no wind. at this speed, the plane flew 300 miles with the wind
kherson [118]
The answer to your question is 50 miles per hour
4 0
3 years ago
Other questions:
  • Your friend asks you for a glass of water and you bring her 5 milliliters of water. Is this more or less than what she was proba
    15·1 answer
  • What is minnaloushe
    5·1 answer
  • How do you calculate Mass using the formula for force?
    9·1 answer
  • air passing over an airplanes wing travels ,and therefore exerts pressure.than air traveling beneath the wing.
    9·1 answer
  • Light of wavelength 578.0 nm is incident on a narrow slit. The diffraction pattern is viewed on a screen 62.5 cm from the slit.
    15·1 answer
  • Explain non-duality in one sentence
    8·2 answers
  • Certain gases in the atmosphere – water vapor, carbon dioxide, methane and nitrous oxIde – help maintain the Earth’s temperature
    13·1 answer
  • Can some one help me ;-;
    10·1 answer
  • Can someone help me with the motion maps, I don't understand what I am supposed to write in the description or how to draw the a
    15·1 answer
  • infrared radiation from young stars can pass through the heavy dust clouds surrounding them, allowing astronomers here on earth
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!