-- The train starts at 23 m/s and slows down by 0.25 m/s every second.
So it'll take (23/0.25) = 92 seconds to stop.
-- Its average speed during that time will be (1/2)(23+0) = 11.5 m/s
-- Moving at an average speed of 11.5 m/s for 92 sec, the train will cover
(11.5 m/s) x (92 sec) = <em>1,058 meters</em> .
Answer:
a = 1.72 m/s²
Explanation:
The given kinematic equation is the 2nd equation of motion. The equation is as follows:
xf = xi + (Vi)(t) + (1/2)(a)t²
where,
xf = the final position = 5000 m
xi = the initial position = 1000 m
Vi = the initial velocity = 15 m/s
t = the time taken = 60 s
a = acceleration = ?
Therefore,
5000 m = 1000 m + (15 m/s)(60 s) + (1/2)(a)(60 s)²
5000 m = 1000 m + 900 m + a(1800 s²)
5000 m = 1900 m + a(1800 s²)
5000 m - 1900 m = a(1800 s²)
a(1800 s²) = 3100 m
a = 3100 m/1800 s²
<u>a = 1.72 m/s²</u>
Answer:
The box will experience an acceleration.
Explanation:
Here, 2 N and 3 N forces are acting opposite to each other. In this case, the net force experience by the box would be (3-2)N = 1 N towards right. Since acceleration is directly proportional to the net force, therefore the box will experience an acceleration.
Answer:
C) The restoring force
Explanation:
Hooke's Law states that the restoring force acting on a spring is given by the equation:

where
k is the spring constant
x is the displacement of the spring from its equilibrium position
The negative sign in the equation tells the direction of the restoring force. In fact, this force tends to bring the spring back to its equilibrium position: so, the force is always in opposite direction to the displacement.
This means that when the spring is stretched to the right, the restoring force tends to bring it back to the left, to the equibrium position; if the spring is compressed to the left, the restoring force tends to bring it back to the right, to the equilibrium position.
So the correct option is
C) The restoring force