Answer:
The uncertainty in momentum changes by a factor of 1/2.
Explanation:
By Heisenberg's uncertainty principle, ΔpΔx ≥ h/2π where Δp = uncertainty in momentum and Δx = uncertainty in position = 0.2 nm. The uncertainty in momentum is thus Δp ≥ h/2πΔx. If the uncertainty in position is doubled, that is Δx₁ = 2Δx = 0.4 nm, the uncertainty in momentum Δp₁ now becomes Δp₁ ≥ h/2πΔx₁ = h/2π(2Δx) = (h/2πΔx)/2 = Δp/2.
So, the uncertainty in momentum changes by a factor of 1/2.
Answer:
2677.3 N
Explanation:
v₀ = initial speed of the hand = 4.75 m/s
v = final speed of the hand = 0 m/s
m = Total mass of hand and forearm = 1.55 kg
t = time interval for hand to come to rest = 2.75 ms = 0.00275 s
F = Force applied on the leg
Using Impulse-change in momentum equation
F t = m (v - v₀)
F (0.00275) = (1.55) (0 - 4.75)
F = - 2677.3 N
magnitude of force = 2677.3 N
The correct answer you're looking for would be Theories.
Explanation:
Work = force × displacement
532 J = 48 N × d
d ≈ 11 m
Answer:
Work done = (1/2)[(Gmm_e)/(R_e)]
Explanation:
I've attached the explanations below.