Answer:
Closed system, because the speed of the car is as expected in the case where an object has uniform acceleration for a time t
Explanation:
Here in the question it is mentioned that a toy car has an initial acceleration of 2m/s² across a horizontal surface so we can say that it is acted upon by an external force
Assuming that the acceleration is constant and the reason for this assumption is there at the last
The major difference between an open system and closed system is in case of open system there will be transfer of matter and in case of closed system there will be no change in matter of the system
If acceleration is constant in case of closed system we can expect the speed of the car after a time t by using the formula
s = u×t + 0·5×a×t²
where s is the distance travelled
t is the time taken to travel that distance
u is the initial velocity
a is the acceleration of that system
But in case of open system as there will be a change of mass there will be a change in velocity of the system so in this case we cannot expect the speed of the car after a time t
And if the acceleration is not constant then we cannot say that the toy car is an open system or closed system, that is why we are assuming that the acceleration of the toy car is constant
Answer:
8) 709.8875 J
9) The object is at 7.24375 m from the ground
10) Kinetic energy increases as the object falls.
Explanation:
We use the expression for the displacement h(t) as a function of time of an object experiencing free fall:
h(t) = hi - (g/2) t^2
hi being the initial position of the object (10m) above ground, g the acceleration of gravity (9.8 m/s^2), and t the time (in our case 0.75 seconds):
h(0.75) = 10 - 4/9 (0.75)^2 = 7.24375 m
This is the position of the 10 kg object after 0.75 seconds (answer for part 9)
Knowing this position we can calculate the potential energy of the object when it is at this height, using the formula:
U = m g h = 10kg * 9.8 (m/s^2) * 7.24375 m = 709.8875 J (answer for part 8)
Part 10)
the kinetic energy of the object increases as it gets closer to ground, since its velocity is increasing in magnitude because is being accelerated in its motion downwards.
The speed of the rock at 20 m is 34.3 m/s
Explanation:
We can solve this problem by using the law of conservation of energy: the mechanical energy of the rock, sum of its potential energy + its kinetic energy) must be conserved in absence of air resistance. So we can write:
where
:
is the initial potential energy
is the initial kinetic energy
is the final potential energy
is the final kinetic energy
The equation can also be rewritten as follows:
where:
m = 100 kg is the mass of the rock
is the acceleration of gravity
is the initial height
u = 0 is the initial speed (the rock starts at rest)
is the final height of the rock
v is the final speed when h = 20 m
And solving for v, we find:

Learn more about kinetic energy and potential energy here:
brainly.com/question/6536722
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
Explanation:
The difference between a bound orbit and an unbound orbit around the sun is that:
An object on a bound orbit pursues the same way around the Sun again and again, while an object on an unbound orbit moves toward the Sun only a single time and afterward stays away forever & never returns.
F=ma
Mass times acceleration
We have g (10ms^_2) and a (1 given)
So total would be
10 kg times (10+1) =
110 N