Answer:
10.4mm
Explanation:
2 pages = 1 leaf
200 pages = 100 leaves
100 × 0.10 = 10 mm thickness
Total thickness = 2(0.20) +10 = 0.4+10 = 10.4mm
For the first part of this question, consider that "weight" can be described as mass x acceleration of gravity. Weight is expressed in Newtons. To solve for mass in this case, simply divide 9800N by 9.8m/s^2 (Earth's gravitational acceleration). This will give you a mass of 1000 kg. This mass is moved due to the net force supplied by the normal force from the rocket "pushing" off of Earth.
For the second part, we will use the equation F = ma, which is Newton's second law. For this, we know the m, or mass, is 1000 kg. Also, we know the a, or acceleration, will be 4 m/s^2. To solve for force, we will multiply both of these values. This gives a force of 4000 N. I hope this clears things up!
It has to be the last one because whenever lights are turned on it decreases because all lights are on at the same time. It's good to just have one light on. It doesn't use as much electricity.
Answer:
3.48 seconds
Explanation:
At maximum height Vf=0 m/s
Vf= Vi - g*t
⇒g*t= Vi
⇒t= Vi/g
⇒t= 112/32.17 sec
⇒ t= 3.48 s
so the projectile will achieve its maximum height in 3.48 seconds.
Answer:
1 / 2 m v^2 = L m g (1 - cos θ)
This is the KE due to the pendulum falling from a 25 deg displacement
v^2 = 2 L g (1 - cos 25) = 2 * 2 * 9.8 (1 - .906) = 3.67 m^2/s^2
v = 1.92 m/s this is the speed due to an initial displacement of 25 deg
Its speed at the bottom would then be
1.92 + 1.2 = 3.12 m/s since it gains 1.92 m/s from its initial displacement