The given question is incomplete. The complete question is as follows.
A parallel-plate capacitor has capacitance
= 8.50 pF when there is air between the plates. The separation between the plates is 1.00 mm.
What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates is not to exceed
V/m?
Explanation:
It is known that relation between electric field and the voltage is as follows.
V = Ed
Now,
Q = CV
or, Q = 
Therefore, substitute the values into the above formula as follows.
Q = 
=
= 
Hence, we can conclude that the maximum magnitude of charge that can be placed on each given plate is
.
Answer:
The specific latent heat (L) of a material is a measure of the heat energy (Q) per mass (m) released or absorbed during a phase change.
It's defined through the formula Q = mL.
Explanation:
Answer:
The final position of the ship after the given time period is 42 km West of B.
Explanation:
Given;
average velocity of the ship, v = 35 km/h
time taken for the ship to reach point D, t = 1.2 hours
The position of the ship after the given time period is calculated as follows;
x = v x t
x = (35 km/h) x 1.2 h = 42 km
x = 42 km West of B.
Therefore, the final position of the ship after the given time period is 42 km West of B.
Answer:
v_f =63 m/s
Explanation:
given,
starting force = 0 N
uniform rate increase to 36 N
time of action of Force = 35 s
mass of the body = 10 Kg
Speed of the object = ?
From the given data
if we plot F-t curve we will get a triangular shape
we know,
Impulse = Area between F-t curve
= (1/2) x base x height
= 0.5 x 35 x 36
= 630 N.s
now use Impulse-momentum theorem
Impulse = change in momentum
630 = 10 x (v_f - vi)
630 = 10 x (v_f - 0)
v_f =63 m/s
Speed of the object at 35 sec is equal to v_f =63 m/s
The answer is Energy
Explanation: in sound waves , energy is transferred through vibration of air particles or particles of a solid through which the sound travels