Answer:
•→ The motion of a particle or body in S.H.M acts towards a fixed point.
•→ Acceleration of the body under S.H.M is proportional to its displacement.
•→ This motion is periodic.
•→ Mechanical energy is conserved in S.H.M
Explanation:
S.H.M is Simple Harmonic Motion
![.](https://tex.z-dn.net/?f=.)
Answer:
![v_{mp}=305.83 m/s](https://tex.z-dn.net/?f=v_%7Bmp%7D%3D305.83%20m%2Fs)
Explanation:
The temperature in stratosphere is generally about 270 K
molecular weight of an ozone molecule = 48 gm/mole
now formula for most probable velocity
![v_{mp}= \sqrt{\frac{2RT}{M} }](https://tex.z-dn.net/?f=v_%7Bmp%7D%3D%20%5Csqrt%7B%5Cfrac%7B2RT%7D%7BM%7D%20%7D)
plugging the values we get
![v_{mp}= \sqrt{\frac{2\8.314\times270}{48} }](https://tex.z-dn.net/?f=v_%7Bmp%7D%3D%20%5Csqrt%7B%5Cfrac%7B2%5C8.314%5Ctimes270%7D%7B48%7D%20%7D)
![v_{mp}=305.83 m/s](https://tex.z-dn.net/?f=v_%7Bmp%7D%3D305.83%20m%2Fs)
Answer:The human eye is sensitive to yellow-green light having a frequency of about 5.5*10^{14} ... What is the energy in joules of the photons associated with this light? ... As the wavelength and frequency of a wave are related, we can find the energy ... In order to find this value, we need Planck's Constant, h=6.626×10−34 J⋅s h ...
Explanation:
We have here what is known as parallel combination of resistors.
Using the relation:
![\frac{1}{ r_{eff} } = \frac{1}{ r_{1} } + \frac{1}{ r_{2} } + \frac{1}{ r_{3} }.. . + \frac{1}{ r_{n} } \\](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%20r_%7Beff%7D%20%7D%20%3D%20%5Cfrac%7B1%7D%7B%20r_%7B1%7D%20%7D%20%2B%20%5Cfrac%7B1%7D%7B%20r_%7B2%7D%20%7D%20%2B%20%5Cfrac%7B1%7D%7B%20r_%7B3%7D%20%7D..%20.%20%2B%20%5Cfrac%7B1%7D%7B%20r_%7Bn%7D%20%7D%20%5C%5C%20)
And then we can turn take the inverse to get the effective resistance.
Where r is the magnitude of the resistance offered by each resistor.
In this case we have,
(every term has an mho in the end)
![\frac{1}{10000} + \frac{1}{2000} + \frac{1}{1000} \\ \\ = \frac{1}{1000} ( \frac{1}{10} + \frac{1}{2} + \frac{1}{1} ) \\ \\ = \frac{1}{1000} ( \frac{31}{20}) \\ \\ = \frac{31}{20000}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B10000%7D%20%2B%20%5Cfrac%7B1%7D%7B2000%7D%20%2B%20%5Cfrac%7B1%7D%7B1000%7D%20%5C%5C%20%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B1000%7D%20%28%20%5Cfrac%7B1%7D%7B10%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B1%7D%20%29%20%5C%5C%20%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B1000%7D%20%28%20%5Cfrac%7B31%7D%7B20%7D%29%20%5C%5C%20%5C%5C%20%3D%20%5Cfrac%7B31%7D%7B20000%7D%20)
To ger effective resistance take the inverse:
we get,
![\frac{20000}{31} \: ohm \\ = 645 .16 \: ohm](https://tex.z-dn.net/?f=%20%5Cfrac%7B20000%7D%7B31%7D%20%5C%3A%20ohm%20%5C%5C%20%3D%20645%20.16%20%5C%3A%20ohm)
The potential difference is of 9V.
So the current flowing using ohm's law,
V = IR
will be, 0.0139 Amperes.