Answer:

Explanation:
Since the surface is frictionless, momentum will be conserved. If the bullet of mass
has an initial velocity
and a final velocity
and the block of mass
has an initial velocity
and a final velocity
then the initial and final momentum of the system will be:


Since momentum is conserved,
, which means:

We know that the block is brought to rest by the collision, which means
and leaves us with:

which is the same as:

Considering the direction the bullet moves initially as the positive one, and writing in S.I., this gives us:

So kinetic energy of the bullet as it emerges from the block will be:

To solve this problem it is necessary to apply the concepts related to Hooke's Law as well as Newton's second law.
By definition we know that Newton's second law is defined as

m = mass
a = Acceleration
By Hooke's law force is described as

Here,
k = Gravitational constant
x = Displacement
To develop this problem it is necessary to consider the two cases that give us concerning the elongation of the body.
The force to keep in balance must be preserved, so the force by the weight stipulated in Newton's second law and the force by Hooke's elongation are equal, so

So for state 1 we have that with 0.2kg there is an elongation of 9.5cm


For state 2 we have that with 1Kg there is an elongation of 12cm


We have two equations with two unknowns therefore solving for both,


In this way converting the units,


Therefore the spring constant is 313.6N/m
Answer:
D-The information needs to travel only a short distance.
Explanation:
Answer:
The angular speed of the wheel is 0.452 rad/s
Explanation:
The angle through which the car wheel turns, Δθ = 277° = 277/360 × 2·π radian
The time it takes for the car wheel to turn, Δt = 10.7 s
The angular speed, ω is given by the following equation;

Substituting the known values for Δθ and Δt gives;

The angular speed of the wheel = 0.452 rad/s
The featured character is the character who dives into water and brings up a small amount of mud or sand.