The correct answer would be 1.35m/s sw.
Answers
1.) non-polar
2.) non-polar
3.) Polar
4.) Polar
Non-polar molecules are essentially molecules that have an even distribution of of electrical charges.
Polar molecules is the separation of electric charges, having one positive end and another negative end.
The answer is the last choice.
Its electrical potential energy stays the same because it has the same electric potential. The reason why is that moving the charge towards X does not change the distance of the negative charge between the plates. The Electrical potential energy of a particle is the result energy by virtue of its position from the electrical fields produce by the plates both positive and negative. Since the charge is still equidistant to each other (assuming based from the diagram) no change in terms of electrical energy consumption or work was done.
Answer:
Yes
Explanation:
Yes, bluetooth devices work in a frequency range between 2.4 - 2.485GHz. Outside this frequency the devices will not communicate with each other correctly. This frequency equals a wavelength of around 1cm. Therefore, any change in the amplitude or wavelength would need to be in relation to each other in order to maintain the frequency in the required range for the bluetooth device to work accordingly. If one increases while the other remains the same it can easily change the frequency to outside the range.