Answer:
Step-by-step explanation:
Given,
Length of a rectangle = 20 inches
Perimeter of a rectangle = 64 inches
Area of a rectangle = ?
Let width of a rectangle be ' w ' .
<u>Fi</u><u>rst</u><u>,</u><u> </u><u>finding </u><u>the</u><u> </u><u>width</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangle</u>
plug the values
⇒
Distribute 2 through the parentheses
⇒
Swap the sides of the equation
⇒
Move 2w to right hand side and change it's sign
⇒
Subtract 40 from 64
⇒
Divide both sides of the equation by 2
⇒
Calculate
⇒
Width of a rectangle ( w ) = 12 inches
<u>Now</u><u>,</u><u> </u><u>finding</u><u> </u><u>the</u><u> </u><u>area</u><u> </u><u>of </u><u>a</u><u> </u><u>rectangle</u><u> </u><u>having</u><u> </u><u>length</u><u> </u><u>of</u><u> </u><u>2</u><u>0</u><u> </u><u>inches</u><u> </u><u>and </u><u>width </u><u>of</u><u> </u><u>1</u><u>2</u><u> </u><u>inches</u>
plug the values
⇒
Multiply the numbers : 20 and 12
⇒
Hence, Area of a rectangle = 240 inches²
Hope I helped !
Best regards!
Answer:
Step-by-step explanation:
Let c represents child bikes and a represents adult bikes.
Given : Each child bike requires 4 hours to build and 4 hours to test. Each adult bike requires 6 hours to build and 4 hours to test.
With the number of workers, the company is able to have up to 120 hours of building time and 100 hours of testing time for a week.
Then, the required system of inequality :-
If company make 10 child bikes and 12 adult bikes in the week.
Then Put c=10 and a=12 bikes in (1) and (2).
⇒Bike order meets the restrictions
⇒Bike order meets the restrictions
Hence, the system of inequality best explains whether the company can build 10 child bikes and 12 adult bikes in the week.
Have a nice day hope this helps
<span>The quadrilateral ABCD have vertices at points A(-6,4), B(-6,6), C(-2,6) and D(-4,4).
</span>
<span>Translating 10 units down you get points A''(-6,-6), B''(-6,-4), C''(-2,-4) and D''(-4,-6).
</span>
Translaitng <span>8 units to the right you get points A'(2,-6), B'(2,-4), C'(6,-4) and D'(4,-6) that are exactly vertices of quadrilateral A'B'C'D'.
</span><span>
</span><span>Answer: correct choice is B.
</span>