In the quadratic formula, what are a, b, and c for the following problem? - x ^ 2 + 2x = - 6
1 answer:

Rewrite the equation in standard form i.e. ax²+bx+c=0

Solve the quadratic equation using the quadratic formula, Put the values into the formula and then compare the values a,b & c

Plug in the values and compare

On comparing we get,
You might be interested in
<span>19095705.3333 is the answer
hope i helped!</span>
Answer:
x= (2/5)-(2y/5) (Im not sure if this is what you need but this is the answer simplified)
Step-by-step explanation:
Move all terms that don't contain x to the right side and solve.
Answer:
Step-by-step explanation:
1
Answer:
x=-1, y=1. (-1, 1).
Step-by-step explanation:
5y-6=x
y=-x
-----------
5(-x)-6=x
-5x-6=x
-5x-x=6
-6x=6
x=6/-6
x=-1
y=-(-1)=1
Given:

To prove:
The given statement.
Proof:
We have,



![[\because a^2+b^2=(a+b)^2-2ab]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5E2%2Bb%5E2%3D%28a%2Bb%29%5E2-2ab%5D)
![[\because \cos^2 \alpha+\sin^2\alpha=1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Ccos%5E2%20%5Calpha%2B%5Csin%5E2%5Calpha%3D1%5D)

Now,

![[\because \cos 2\theta=2\cos^2\theta -1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Ccos%202%5Ctheta%3D2%5Ccos%5E2%5Ctheta%20-1%5D)
![RHS=\dfrac{1}{4}[2+2\cos^2 2\alpha]](https://tex.z-dn.net/?f=RHS%3D%5Cdfrac%7B1%7D%7B4%7D%5B2%2B2%5Ccos%5E2%202%5Calpha%5D)
![[\because \cos 2\theta=2\cos^2\theta -1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Ccos%202%5Ctheta%3D2%5Ccos%5E2%5Ctheta%20-1%5D)
![[\because (a-b)^2=a^2-2ab+b^2]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28a-b%29%5E2%3Da%5E2-2ab%2Bb%5E2%5D)
![RHS=\dfrac{1}{4}[2+8\cos^4 \alpha-8\cos \alpha+2]](https://tex.z-dn.net/?f=RHS%3D%5Cdfrac%7B1%7D%7B4%7D%5B2%2B8%5Ccos%5E4%20%5Calpha-8%5Ccos%20%5Calpha%2B2%5D)
![RHS=\dfrac{1}{4}[4+8\cos^4 \alpha-8\cos \alpha]](https://tex.z-dn.net/?f=RHS%3D%5Cdfrac%7B1%7D%7B4%7D%5B4%2B8%5Ccos%5E4%20%5Calpha-8%5Ccos%20%5Calpha%5D)



Hence proved.