Answer:
O Charles's law
.
Explanation:
Hello!
In this case, since the use of gas laws leads to a good comprehension of how gases behave towards volume, pressure and temperature, we can review that the Boyle's law explains the pressure-volume variation, the Dalton's law the partial pressure effect, the Gay-Lussac's law that of pressure and temperature and the Charles' that of temperature and volume at constant pressure; thus, the answer for the asked question is:
O Charles's law
Best regards!
Answer:
1.53 L
Explanation:
Step 1: Given data
- Mass of oxygen (m): 11.2 g
- Ideal gas constant (R): 0.0821 atm.L/mol.K
Step 2: Calculate the moles (n) corresponding to 11.2 g of oxygen
The molar mass of oxygen is 32.00 g/mol.
11.2 g × (1 mol/32.00 g) = 0.350 mol
Step 3: Calculate the volume of oxygen
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T / P
V = 0.350 mol × (0.0821 atm.L/mol.K) × 415 K / 7.78 atm
V = 1.53 L
Answer:
A.it is converted into thermal energy