H2O (water) has 2 hydrogen atoms and 1 oxygen atom.
Answer: Flammability is a material's ability to burn in the presence of oxygen.
Explanation: Chemical properties can be observed only when the substance changes into one or more different substances through chemical reactions or transformations. One of the chemical properties is flammability.
Flammability is a material's ability to burn in the presence of oxygen.
Remember, oxygen doesn't burn. Precisely flammable substances obtain substances that burn. Oxygen remains an oxidizing agent, which means it supports the combustion process. Oxygen causes other objects to catch fire at low temperatures and burns hotter and faster. But oxygen itself does not burn. Consequently, if you at present deliver fuel and fire, adding oxygen will provide the fire.
Carbon dioxide is the result of combustion. An example can be seen in firewood in a fireplace. One of the chemical properties of carbon-based wood is having the ability to burn. Chemically the wood turns into carbon dioxide when it burns and leaves a residue of ash. Furthermore, this ash residue cannot be turned back into the wood. Chemical changes result in new substances.
Consider an example of a combustion reaction to methane gas:
Our balanced equation for methane combustion implies that every one CH₄ molecule reacts with two O₂ molecules. The product of combustion is one carbon dioxide molecule and two steam or water vapor molecules.
<h2>Answer : Law of conservation of mass</h2><h3>Explanation :</h3>
The law of conservation of mass states that in any reaction mass is neither created nor lost it has to remain constant in a system.
In this case, when the reaction setup was done in normal way the mass was lost in surrounding was not considered nor being calculated; whereas when the reaction was studied in a closed system where the gas was collected after the reaction the mass changes was noted down which helped to prove the point of law of conservation of mass and energy.
One can consider an example of soda can where the carbonated drink contains pressurized carbon dioxide gas. when opened the gas bubbles gets lost into the surroundings and we don't measure the mass changes. Instead if the soda can was opened in such a way where the gas evolved was measured then the mass changed would remain the same.