Water will freeze at 0°C so the answer is b
Alfred Wegener
I think let me know if I am wrong
Answer:
47.68 mL
Explanation:
In this case, we have a <u>dilution problem.</u> So, we have to start with the dilution equation:

We have to remember that in a dilution procedure we go from a <u>higher concentration to a lower one</u>. With this in mind, We have to identify the <u>concentration values</u>:


The higher concentration is C1 and the lower concentration is C2. Now, we can identify the <u>volume values</u>:


The V2 value has <u>"mL"</u> units, so V1 would have <u>"mL"</u> units also. Now, we can include all the values into the equation and <u>solve for "V1"</u>, so:


So, we have to take 47.68 mL of the 6 M and add 139.31 mL of water (187-47.68) to obtain a solution with a final concentration of 1.53 M.
I hope it helps!
Use the formula, Q= mcT
Q= heat
m= mass= 1.900Kg= 1.900 x 10^3 grams
c= specific heat= 3.21
T= 4.542 K
Q= (1.900 x10^3g)(3.21)(4.542K)= 14.6 Joules.