Answer:
a) Please see attached copy below
b) 0.39KJ
c) 20.9‰
Explanation:
The three process of an air-standard cycle are described.
Assumptions
1. The air-standard assumptions are applicable.
2. Kinetic and potential energy negligible.
3. Air in an ideal gas with a constant specific heats.
Properties:
The properties of air are gotten from the steam table.
b) T₁=290K ⇒ u₁=206.91 kj/kg, h₁=290.16 kj/kg.
P₂V₂/T₂=P₁V₁/T₁⇒ T₂=P₂T₁/P₁ = 380/95(290K)= 1160K
T₃=T₂(P₃/P₂)⁽k₋1⁾/k =(1160K)(95/380)⁽⁰°⁴/₁.₄⁾ =780.6K
Qin=m(u₂₋u₁)=mCv(T₂-T₁)
=0.003kg×(0.718kj/kg.k)(1160-290)K= 1.87KJ
Qout=m(h₃₋h₁)=mCp(T₃₋T₁)
=0.003KG×(1.005kj/kg.k(780.6-290)K= 1.48KJ
Wnet, out= Qin-Qout = (1.87-1.48)KJ =0.39KJ
c)ηth= Wnet/W₍in₎ =0.39KJ/1.87KJ = 20.9‰
Answer:
Complete question is:
write the following decorators and apply them to a single function (applying multiple decorators to a single function):
1. The first decorator is called strong and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <strong> and </strong> to the argument of the decorator. The return value of the wrapper should look like: return “<strong>” + func() + “</strong>”
2. The decorator will return the wrapper per usual.
3. The second decorator is called emphasis and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <em> and </em> to the argument of the decorator similar to step 1. The return value of the wrapper should look like: return “<em>” + func() + “</em>.
4. Use the greetings() function in problem 1 as the decorated function that simply prints “Hello”.
5. Apply both decorators (by @ operator to greetings()).
6. Invoke the greetings() function and capture the result.
Code :
def strong_decorator(func):
def func_wrapper(name):
return "<strong>{0}</strong>".format(func(name))
return func_wrapper
def em_decorator(func):
def func_wrapper(name):
return "<em>{0}</em>".format(func(name))
return func_wrapper
@strong_decorator
@em_decorator
def Greetings(name):
return "{0}".format(name)
print(Greetings("Hello"))
Explanation:
Answer:
We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...
Explanation:
We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...
Answer:
D. left foot for the accelerator and your right foot for the brake.
* Hopefully this helps:) mark me the brainliest:)!!
Answer:
5.6 mm
Explanation:
Given that:
A cylindrical tank is required to contain a:
Gage Pressure P = 560 kPa
Allowable normal stress
= 150 MPa = 150000 Kpa.
The inner diameter of the tank = 3 m
In a closed cylinder there exist both the circumferential stress and the longitudinal stress.
Circumferential stress 
Making thickness t the subject; we have


t = 0.0056 m
t = 5.6 mm
For longitudinal stress.



t = 0.0028 mm
t = 2.8 mm
From the above circumferential stress and longitudinal stress; the stress with the higher value will be considered ; which is circumferential stress and it's minimum value with the maximum thickness = 5.6 mm