1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goshia [24]
3 years ago
6

How did studying pagodas help engineers create earthquake-proof structures in modern society?A. Engineers learned that the desig

n was flawed, so they knew not to repeat it. B. Engineers learned that certain soil needed to be used. Engineers learned that perseverance pays off. C. Engineers learned which design would be most appropriate for the area where they were building.
Engineering
1 answer:
Mila [183]3 years ago
7 0

D cuz i took the test

You might be interested in
An inventor claims to have devised a cyclical power engine that operates with a fuel whose temperature is 750 °C and radiates wa
Phantasy [73]

Answer:

Yes

Explanation:

Given Data

Temprature of source=750°c=1023k

Temprature of sink =0°c=273k

Work produced=3.3KW

Heat Rejected=4.4KW

Efficiency of heat engine(η)=\frac{Work produced}{Heat supplied}

and

Heat Supplied {\left (Q_s\right)}=Work Produced(W)+Heat rejected\left ( Q_r \right )

{Q_s}=3.3+4.4=7.7KW

η=\frac{3.3}{7.7}

η=42.85%

Also the maximum efficiency of a heat engine operating between two different Tempratures i.e. Source & Sink

η=1-\frac{T_ {sink}}{T_ {source}}

η=1-\frac{273}{1023}

η=73.31%

Therefore our Engine Efficiency is less than the maximum efficiency hence the given claim is valid.

5 0
3 years ago
A piston-cylinder device contains 0.1 m3 of liquid water and 0.9 m² of water vapor in equilibrium at 800 kPa. Heat is transferre
docker41 [41]

Answer:

Initial temperature = 170. 414 °C

Total mass = 94.478 Kg

Final volumen = 33.1181 m^3

Diagram  = see picture.

Explanation:

We can consider this system as a close system, because there is not information about any output or input of water, so the mass in the system is constant.  

The information tells us that the system is in equilibrium with two phases: liquid and steam. When a system is a two phases region (equilibrium) the temperature and pressure keep constant until the change is completed (either condensation or evaporation). Since we know that we are in a two-phase region and we know the pressure of the system, we can check the thermodynamics tables to know the temperature, because there is a unique temperature in which with this pressure (800 kPa) the system can be in two-phases region (reach the equilibrium condition).  

For water in equilibrium at 800 kPa the temperature of saturation is 170.414 °C which is the initial temperature of the system.  

to calculate the total mass of the system, we need to estimate the mass of steam and liquid water and add them. To get these values we use the specific volume for both, liquid and steam for the initial condition. We can get them from the thermodynamics tables.

For the condition of 800 kPa and 170.414 °C using the thermodynamics tables we get:

Vg (Specific Volume of Saturated Steam) = 0.240328 m^3/kg

Vf (Specific Volume of Saturated Liquid) = 0.00111479 m^3/kg

if you divide the volume of liquid and steam provided in the statement by the specific volume of saturated liquid and steam, we can obtain the value of mass of vapor and liquid in the system.

Steam mass = *0.9 m^3 / 0.240328 m^3/kg = 3.74488 Kg

Liquid mass = 0.1 m^3 /0.00111479 m^3/kg = 89.70299 Kg  

Total mass of the system = 3.74488 Kg + 89.70299 Kg = 93,4478 Kg

If we keep the pressure constant increasing the temperature the system will experience a phase-change (see the diagram) going from two-phase region to superheated steam. When we check for properties for the condition of P= 800 kPa and T= 350°C we see that is in the region of superheated steam, so we don’t have liquid water in this condition.  

If we want to get the final volume of the water (steam) in the system, we need to get the specific volume for this condition from the thermodynamics tables.  

Specific Volume of Superheated Steam at 800 kPa and 350°C = 0.354411 m^3/kg

We already know that this a close system so the mass in it keeps constant during the process.

 

If we multiply the mass of the system by the specific volume in the final condition, we can get the final volume for the system.  

Final volume = 93.4478 Kg * 0.354411 m^3/kg = 33.1189 m^3

You can the P-v diagram for this system in the picture.  

For the initial condition you can calculate the quality of the steam (measure of the proportion of steam on the mixture) to see how far the point is from for the condition on all the mix is steam. Is a value between 0 and 1, where 0 is saturated liquid and 1 is saturated steam.  

Quality of steam = mass of steam / total mass of the system

Quality of steam = 3.74488 Kg /93.4478 Kg = 0,040 this value is usually present as a percentage so is 4%.  

Since this a low value we can say that we are very close the saturated liquid point in the diagram.  

6 0
3 years ago
Can i eat unhealthy while i’m drinking green tea for weight loss ?
Zina [86]

Answer:I don't think it's a better idea to eat unhealthy food while having green tea because it will act as a strumbling rock in your attempt of getting weight loss.

Explanation:I don't say you have to mark my ans as brainliest but if ypu think it has really helped you plz don't forget to thank me...

6 0
3 years ago
Read 2 more answers
What does a peak flow meter allow you to assess?
Alex Ar [27]

Answer:

  peak flow and any engineering considerations related thereto

Explanation:

It should be no surprise that a peak flow meter will report peak flow, sometimes with important maximum-value, time-constant, or bandwidth limitations. There are many engineering issues related to flow rates. A peak flow meter can allow you to assess those issues with respect to the flows actually encountered.

Peak flow can allow you to assess adequacy of flow and whether there may be blockages or impediments to flow that reduce peak levels below expected values. An appropriate peak flow meter can help you assess the length of time that peak flow can be maintained, and whether that delivers sufficient volume.

It can also allow you to assess whether appropriate accommodation is made for unexpectedly high flow rates. (Are buffers or overflow tanks of sufficient size? Is there adequate protection against possible erosion? Is there adequate support where flow changes direction?)

3 0
3 years ago
7. Which of the following is a disadvantage of an electromagnet?
Sati [7]

Answer:

I think

electromagnets require power to operate

7 0
3 years ago
Other questions:
  • Air enters a compressor operating at steady state with pressure of 90 kPa, at a temperature of 350 K, and a volumetric flow rate
    13·1 answer
  • You are a designer of a new processor. You have to choose between two possible implementations (called M1 and M2) of the same ar
    5·1 answer
  • Write a single statement that prints outsideTemperature with 2 digits in the fraction
    8·1 answer
  • How to update android 4.4.2 to 5.1 if there isnt any update available​
    15·2 answers
  • X²-12x=0 ПЖ срочно реально решите помагие ​
    9·1 answer
  • How can any student outside apply for studying engineering at Cambridge University​
    7·1 answer
  • How to update android 4.4.2 to 5.1​
    13·1 answer
  • Who wanna rp?????????????????????????!
    15·1 answer
  • Why would the shear stress be considered as the momentum flux.
    6·1 answer
  • Algorithm for sum 2+4+6+….+n
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!