1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maxonik [38]
3 years ago
13

If you are a mechanical engineer answer these questions:

Engineering
1 answer:
Natasha_Volkova [10]3 years ago
3 0

Answer:

1. Yes, they are all necessary.

2. Both written and verbal communication skills are of the utmost importance in business, especially in engineering. Communication skills boost you or your teams' performance because they provide clear information and expectations to help manage and deliver excellent work.

You might be interested in
A coal fired power plant geneartes 2.4 lbs. of CO2 per kWh. A lighting system consumes 300,000kWh per year. A corporation is con
Serjik [45]

Answer:

The perceived economic impact of CO2 generated per year by lighting sstem is $8164.67.

Explanation:

The CO2 requirement for the plant is:

Amount of CO2 per year = (2.4 lb / KWh)(300,000 KWh)

Amount of CO2 per year = (720000 lb)(1 ton/ 2204.62 lb)

Amount of CO2 per year = 326.59 ton

The perceived economic impact of CO2 generated per year will then be:

Economic Impact = ($25 / ton)(326.59 ton)

<u>Economic Impact = $8164.67</u>

7 0
3 years ago
What are the well-known effects of electricity​
Sever21 [200]

Answer:

Hence, the three effects of electric current are heating effect, magnetic effect and chemical effect.

3 0
3 years ago
Read 2 more answers
Anyone want to play among us with me the code is MMJSUF
Katarina [22]

Answer:

sure

Explanation:

6 0
3 years ago
Read 2 more answers
A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and a gage pressure of 300 kPa. If the gas
ch4aika [34]

Answer:

gauge pressure is 133 kPa

Explanation:

given data

initial temperature T1 = 27°C = 300 K

gauge pressure = 300 kPa = 300 × 10³ Pa

atmospheric pressure = 1 atm

final temperature T2 = 77°C = 350 K

to find out

final pressure

solution

we know that gauge pressure is = absolute pressure - atmospheric pressure so

P (gauge ) = 300 × 10³ Pa - 1 × 10^{5} Pa

P (gauge ) = 2 × 10^{5} Pa

so from idea gas equation

\frac{P1*V1}{T1} = \frac{P2*V2}{T2}   ................1

so {P2} = \frac{P1*T2}{T1}

{P2} = \frac{2*10^5*350}{300}

P2 = 2.33 × 10^{5} Pa

so gauge pressure = absolute pressure - atmospheric pressure

gauge pressure = 2.33 × 10^{5}  - 1.0 × 10^{5}

gauge pressure = 1.33 × 10^{5} Pa

so gauge pressure is 133 kPa

4 0
3 years ago
Water is the working fluid in an ideal Rankine cycle. The condenser pressure is 8 kPa, and saturated vapor enters the turbine at
sergeinik [125]

Explanation:

The obtained data from water properties tables are:

Point 1 (condenser exit) @ 8 KPa, saturated fluid

h_{f} = 173.358 \\h_{fg} = 2402.522

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

h_{2a} =  489.752\\h_{2b} =  313.2

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

h_{3a} = 2701.26 \\s_{3a} = 7.1656\\h_{3b} = 2634.14\\s_{3b} = 7.6876

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

x_{a} = 0.8608\\h_{4a} = 2241.448938\\x_{b} = 0.9291\\h_{4b} = 2405.54119

Calculate mass flow rates

Part a) @ 18 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3a}  - h_{4a}) - (h_{2a}  - h_{f})}\\\\= \frac{100*10^ 3}{(2701.26  - 2241.448938 ) - (489.752  - 173.358)}\\\\= 697.2671076 \frac{kg}{s} = 2510161.587 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3a} -  h_{2a})\\Q_{in} = (697.2671076)*(2701.26-489.752)\\\\Q_{in} = 1542011.787 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4a} -  h_{f})\\Q_{out} = (697.2671076)*(2241.448938-173.358)\\\\Q_{out} = 1442011.787 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.06485

Part b) @ 4 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3b}  - h_{4b}) - (h_{2b}  - h_{f})}\\\\= \frac{100*10^ 3}{(2634.14  - 2405.54119 ) - (313.12  - 173.358)}\\\\= 1125 \frac{kg}{s} = 4052374.235 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3b} -  h_{2b})\\Q_{in} = (1125.65951)*(2634.14-313.12)\\\\Q_{in} = 2612678.236 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4b} -  h_{f})\\Q_{out} = (1125)*(2405.54119-173.358)\\\\Q_{out} = 2511206.089 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.038275

6 0
3 years ago
Other questions:
  • Your program should read from an input file, which will contain one or more test cases. Each test case consists of one line cont
    14·1 answer
  • Vehicles arrive at a single toll booth beginning at 8:00 A.M. They arrive and depart according to a uniform deterministic distri
    9·1 answer
  • One of the basic requirements of a servomotor is that it must produce high torque at all: a)Frequencies b)-Voltages c)-Loads d)-
    14·1 answer
  • A torsion member has an elliptical cross section with major and minor dimensions of 50.0 mm and 30.0 mm, respectively. The yield
    10·1 answer
  • The Ethernet (CSMA/CD) alternates between contention intervals and successful transmissions. Assume a 100 Mbps Ethernet over 1 k
    5·1 answer
  • Who's your favorite singer and WHT your favorite song​
    11·2 answers
  • "It is better to be a human being dissatisfied than a pig satisfied; better to be Socrates dissatisfied than a fool satisfied. A
    7·1 answer
  • Automobile engines normally have
    8·1 answer
  • Define ways in which you would go about networking to explore opportunities in your career field and obtain more information for
    11·1 answer
  • Shielding gases are used to protect the molten metal from what?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!