Pressure can be defined as the force acting on a perpendicular surface per unit area.
Force exerted by a man of mass 100 kg wearing snow shoes = m.a
Where m = mass of the man = 100 kg
a = acceleration due to gravity= 9.8 
Force exerted by the man of mass 100 kg = 
Force exerted by woman of mass 60 kg = 
Force exerted by 100 kg man is greater than that exerted as 60 kg woman. The area on which this force is acting determines the pressure. Pressure is inversely proportional to the area on which the force acts. Therefore, the pressure exerted by 100 kg man wearing snow shoes is less than the pressure exerted by a 60 kg woman woman wearing high heels as the force acts over a larger area when the man wears snow shoes when compared to the force exerted over a smaller area in case of the woman wearing high heels.
Answer:
Nurses must use organic chemistry to determine how the bodies of their patients metabolized glucose, and how the body reacts to it.
Answer:
- <u>Tellurium (Te) and iodine (I) are two elements </u><em><u>next to each other that have decreasing atomic masses.</u></em>
Explanation:
The <em>atomic mass</em> of tellurium (Te) is 127.60 g/mol and the atomic mass of iodine (I) is 126.904 g/mol; so, in spite of iodine being to the right of tellurium in the periodic table (because the atomic number of iodine is bigger than the atomic number of tellurium), the atomic mass of iodine is less than the atomic mass of tellurium.
The elements are arranged in increasing order of atomic number in the periodic table.
The atomic number is equal to the number of protons and the mass number is the sum of the protons and neutrons.
The mass number, except for the mass defect, represents the atomic mass of a particular isotope. But the atomic mass of an element is the weighted average of the atomic masses of the different natural isotopes of the element.
Normally, as the atomic number increases, you find that the atomic mass increases, so most of the elements in the periodic table, which as said are arranged in icreasing atomic number order, match with increasing atomic masses. But the relative isotope abundaces of the elements can change that.
It is the case that the most common isotopes of tellurium have atomic masses 128 amu and 130 amu, whilst most common isotopes of iodine have an atomic mass 127 amu. As result, tellurium has an average atomic mass of 127.60 g/mol whilst iodine has an average atomic mass of 126.904 g/mol.
Answer:
C. 100.7 amu
Explanation:
Isotopes of an element are atoms of an element with the same atomic number but different atomic masses. Each atomic mass of an isotope is known as an isotopic mass. An element that exhibits isotope, that is, that have two or more isotopes has a relative atomic mass that is not a whole number.
Relative atomic mass of X is the sum of the products of the relative abundances of each isotope and its isotopic mass.
For Isotope ¹⁰⁰X: 30% × 100 = 30 amu
For Isotope ¹⁰¹X: 70% × 101 = 70.7 amu
Relative atomic mass of X = (30 + 70.7) amu = 100.7 amu
Therefore, the approximate atomic mass of X is 100.7 amu
There are 3,500 milliseconds in a second.
One second contains 1,000 milliseconds. Three seconds contain 3,000 milliseconds. Half of three hours, therefore, would contain 3,500 milliseconds.