Answer:-
0.229 L
Explanation:-
Molar mass of AgBr = 107.87 x 1 + 79.9 x 1
=187.77 grams mol-1
Mass of AgBr = 150 grams
Number of moles of AgBr = 150 grams / 187.77 gram mol-1
= 0.8 mol
The balanced chemical equation is
NaBr (aq) + AgNO3 (aq)--> AgBr(s) + NaNO3(aq)
From the equation we can see that
1 mol of AgBr is produced from 1 mol of AgNO3.
∴ 0.8 mol of AgBr is produced from 1 x 0.8 / 1 = 0.8 mol of AgNO3.
Strength of AgNO3 = 3.5 M
Volume of AgNO3 required = Number of moles / strength
= 0.8 moles / 3.5
=0.229 L
Answer:
Relation between , molality and temperature is as follows.
T =
It is also known as depression between freezing point where, i is the Van't Hoff factor.
Let us assume that there is 100% dissociation. Hence, the value of i for these given species will be as follows.
i for = 3
i for glucose = 1
i for NaCl = 2
Depression in freezing point will have a negative sign. Therefore, d
depression in freezing point for the given species is as follows.
=
=
=
Therefore, we can conclude that given species are arranged according to their freezing point depression with the least depression first as follows.
Glucose < NaCl <
Explanation:
Answer:
A. 2NO + O2 -> 2NO2
B. 4Co + 3O2 -> 2Co2O3
C. 2Al + 3Cl2 -> Al2Cl6
D. 2C2H6 + 7O2 -> 4CO2 + 6H2O
E. TiCl4 + 4Na -> Ti + 4NaCl
Answer:
0.0295M
Explanation:
As you can see, in the mixture you have KSCN and other compounds. The KSCN in solution is dissolved in K⁺ ions and SCN⁻ ions. That means initial concentration of SCN⁻ ions is the same of KSCN, 0.0800M.
You are adding 35.0mL of this solution and the total volume of the mixture is 20.0mL + 35.0mL + 40.0mL = 95.0mL.
That means you are diluting your solution 95.0mL / 35.0mL = 2.714 times.
And the concentration of SCN⁻ is:
0.0800M / 2.714 =
<h3>0.0295M </h3>
Neon has filled its outer shells, therefore it is very stable and does not need to react with other elements and doesn’t form compounds.