Answer:
Each principal energy level above the first contains one s orbital and three p orbitals. A set of three p orbitals, called the p sublevel, can hold a maximum of six electrons. Therefore, the second level can contain a maximum of eight electrons - that is, two in the s orbital and 6 in the three p orbitals.
Explanation:
Answer:
hi 5th grader, stop trying to cheat :)
Explanation:
The mass number plays an important role for elements and their isotopes. Mass number comes from the addition of protons and neutrons (their weight). Isotopes are the elements, but with a different number of neutrons. So in turn, by subtracting the number of protons (atomic number) from the mass, you can find the number of neutrons.
Answer: option (1) an electron.
Justification:
1) The plum pudding model of the atom conceived by the scientist J.J. Thompson, described the atom as a solid sphere positively charged with the electrons (particles negatively charged) embedded.
2) The next model of the atom, developed by the scientist Ernest Rutherford, depicted the atom a mostly empty space with a small dense positively charged nucleous and the electrons surrounding it.
3) Then, Niels Bhor came out with the model of electrons in fixed orbits around the nucleous, just like the planets orbit the Sun. So, the path followed by the electrons were orbits.
4) The quantum model of the atom did not place the electrons in fixed orbits around the nucleous but in regions around the nucleous. Those regions were named orbitals. And they are regions were it is most probable to find the electron, since it is not possible to tell the exact position of an electron.
As per this model, the electron has a wave function associated. The scientist Schrodinger developed the wave equation which predicts the location of the electron as a probability.
The orbitals are those regions were it is most likely to find the electron. Those regions are thought as clouds of electrons.