A.) desertification is when you remove all the trees and most of the plant life in an ares
Answer : The molal freezing point depression constant of X is 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of X liquid (solvent) = 450.0 g
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X= 
i = Van't Hoff factor = 1 (for non-electrolyte)
= molal freezing point depression constant of X = ?
m = molality
Now put all the given values in this formula, we get
![[0.4-(-0.5)]^oC=1\times k_f\times \frac{5.90g\times 1000}{60g/mol\times 450.0g}](https://tex.z-dn.net/?f=%5B0.4-%28-0.5%29%5D%5EoC%3D1%5Ctimes%20k_f%5Ctimes%20%5Cfrac%7B5.90g%5Ctimes%201000%7D%7B60g%2Fmol%5Ctimes%20450.0g%7D)

Therefore, the molal freezing point depression constant of X is 
Answer:
There are 2 double bond units and 1 lone pair, which will try to get as far apart as possible - taking up a trigonal planar arrangement. Because the lone pair isn't counted when you describe the shape, SO2 is described as bent or V-shaped.
Explanation:
There are 2 double bond units and 1 lone pair, which will try to get as far apart as possible - taking up a trigonal planar arrangement. Because the lone pair isn't counted when you describe the shape, SO2 is described as bent or V-shaped.
Since a water molecule is H2O, you would divide 126 hydrogen molecules by 2, and you would get 63. That means you have 63 double hydrogen molecules, and 58 oxygen molecules to pair up with them. So that means you could have 58 molecules of water, with 5 double hydrogen molecules, so basically 10 extra molecules of hydrogen along with the H2O molecules. Hope I helped! :)
Answer:
Because it only needs one more electron to get to a full valence shell (8), so it really wants it and is pulling other electrons in. It also has to do with needing one more electron to fill the 2p shell. It is a small element which means its electrons are pulled tightly to the nucleus.
Hope this helps!
Explanation: