Is there a multiple choice?
Answer:
V = 9.682 × 10^(-6) V
Explanation:
Given data
thick = 190 µm
wide = 4.20 mm
magnitude B = 0.78 T
current i = 32 A
to find out
Calculate V
solution
we know v formula that is
V = magnitude× current / (no of charge carriers ×thickness × e
here we know that number of charge carriers/unit volume for copper = 8.47 x 10^28 electrons/m³
so put all value we get
V = magnitude× current / (no of charge carriers ×thickness × e
V = 0.78 × 32 / (8.47 x 10^28 × 190 × 1.602 x 10^(-19)
V = 9.682 × 10^(-6) V
Answer:
Betelgeuse is 640 light years away from earth.
Explanation:
A light-year is an astronomical unit to measure the distance the light travels in a calendar year.
If the light from a star takes 640 years to reach us, then that star its 640ly away from us.
Betelgeuse has been labeled as a Variant Star, which means that its brightness can fluctuate over the course of years, this has made difficult for astronomers to measure the exact distance of the star. Right now the star is estimated to be around 613 and 881ly away from earth, although, for the sake of your second question, we will take 640 years as our estimated value.
In 1380 (640 years ago) the Battle of Kulikovo took place. A battle of remarkable importance to Russian history, in which the Russian army, led by Prince Dmitry of Moscow, defeated the Mongol army, defining a turning point in the Mongol dominance, and setting the bases for what Russia is today.
Answer:
3.33 Joules Per Second
Explanation:
Before finding the Power, we need to calculate the Work Done. The Work Done can be calculated using the formula:
WD = F × d
where F is the Magnitude of Force in <em>N</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>d is the Parallel Distance moved by the object in <em>m</em><em>.</em>
Hence, by Applying this formula, we get:
WD = (5)(20)
= 100 J
From here calculating Power is simple as it is the Rate of Work Done. Hence,
Power = 100/30
= <u>3</u><u>.</u><u>3</u><u>3</u><u> </u><u>J</u><u>/</u><u>s</u>
Therefore, the power put out is <u>3</u><u>.</u><u>3</u><u>3</u><u> </u><u>J</u><u>o</u><u>u</u><u>l</u><u>e</u><u>s</u><u> </u><u>p</u><u>e</u><u>r</u><u> </u><u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u>.</u>
Answer:
(D) 4
Explanation:
The percentage error in each of the contributors to the calculation is 1%. The maximum error in the calculation is approximately the sum of the errors of each contributor, multiplied by the number of times it is a factor in the calculation.
density = mass/volume
density = mass/(π(radius^2)(length))
So, mass and length are each a factor once, and radius is a factor twice. Then the total percentage error is approximately 1% +1% +2×1% = 4%.
_____
If you look at the maximum and minimum density, you find they are ...
{0.0611718, 0.0662668} g/(mm²·cm)
The ratio of the maximum value to the mean of these values is about 1.03998. So, the maximum is 3.998% higher than the "nominal" density.
The error is about 4%.
_____
<em>Additional comment</em>
If you work through the details of the math, you will see that the above-described sum of error percentages is <em>just an approximation</em>. If you need a more exact error estimate, it is best to work with the ranges of the numbers involved, and/or their distributions.
Using numbers with uniformly distributed errors will give different results than with normally distributed errors. When such distributions are involved, you need to carefully define what you mean by a maximum error. (By definition, normal distributions extend to infinity in both directions.) While the central limit theorem tends to apply, the actual shape of the error distribution may not be precisely normal.