Assume that an ingot of copper has a mass of 9.1 kg or 9100 g.
The cross-sectional area of the copper wire with diameter of 6.5 mm (or 0.65 cm) is
A = (π/4)*(0.65 cm)² = 0.3318 cm²
The density of copper is given as 8.94 g/cm³.
If the length of copper wire is L cm, then
(0.3318 cm²)*(L cm)*(8.94 g/cm³) = 9100 g
L = 9100/(0.3318*8.94) = 3.0678 x 10³ cm
Note that
1 cm = 1/2.54 in = 1/2.54 in = 0.3937 in
= 0.3937/12 = 0.03281 ft
Therefore
L = (3.0678 x 10³ cm)*(0.03281 ft/cm) = 100.65 ft
Answer: 100.65 ft
Half maximum velocity occurs at the point of half maximum kinetic energy which is exactly halfway down.
<h3>
Conservation of energy</h3>
The principle of conservation of energy states that energy can neither be created nor destroyed but can be converted from one form to another.
M.A = K.E + P.E
At the maximum height, the kinetic energy of the ball while potential energy is maximum.
At the half-way down, the ball kinetic energy of the ball is equal to the potential energy.
Thus, half maximum velocity occurs at the point of half maximum kinetic energy which is exactly halfway down.
Learn more about kinetic energy here: brainly.com/question/25959744
I think it is d I hope this help you if not let me know if it is not right
The main difference is the source of the sediment that the rock is formed from. Clastic sedimentary rocks are formed mostly from silicate sediment derived by the breakdown of pre-existing rocks. Bioclastic rocks are formed by the accumulation of fragmented organic remains (such as shell-sand) - i.e. the sediment is of biological rather than non-biological origin.
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.