1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
15

A 10,000 kg traveling 15m/s strikes a second car which is at rest (not moving). The two stick together and move off with speed o

f 4.0 m/s Which type of collision is this?
Physics
1 answer:
Umnica [9.8K]3 years ago
6 0

Answer:

inelastic collision

Explanation:

An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energy of the atoms, causing a heating effect, and the bodies are deformed

You might be interested in
Select answer about motion and newtons law and explain why it's correct 23POINTS NEED ASAP
zlopas [31]

The train would need the greatest amount of force due to weight! If you think of it, a baseball won't need much force to stop it, but if you have a heavy train, it will need excessive force to stop the train. The answer would be #3


I hope this answer helps!

Sorry if it doesn't make sense, as I don't know that much about physics! I am just thinking of what makes sense.

3 0
3 years ago
A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most
Oxana [17]

Answer:

A)  I_{total} = 1.44 kg m², B) moment of inertia must increase

Explanation:

The moment of inertia is defined by

     I = ∫ r² dm

For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is

      I = ½ m R²

A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is

    I = I_{cm} + m D²

Let's apply these equations to our case

The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms

      I_{total}=I_{body} + 2 I_{arm}

       I_{body} = ½ M R²

The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body

       M = 7/8 m total

       M = 7/8 64

       M = 56 kg

The mass of the arms is

      m’= 1/8 m total

      m’= 1/8 64

      m’= 8 kg

As it has two arms the mass of each arm is half

     m = ½ m ’

     m = 4 kg

The arms are very thin, we will approximate them as a particle

    I_{arm} = M D²

Let's write the equation

     I_{total} = ½ M R² + 2 (m D²)

Let's calculate

    I_{total} = ½ 56 0.20² + 2 4 0.20²

    I_{total} = 1.12 + 0.32

    I_{total} = 1.44 kg m²

b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase

6 0
3 years ago
A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in
lilavasa [31]

Answer:

Explanation:

The  change is as follows

P₁ V₁ to 3P₁, V₁ ( constt volume )  --- first process

3P₁,V₁ to 3P₁ , 5V₁ ( constt pressure ) ---- second process

In the first process Temperature must have been increased 3 times . So if initial temperature is T₁ then final temperature will be 3 T₁

P₁V₁ = n R T₁ , n is no of moles of gas enclosed.

nRT₁ = P₁V₁

Heat added at constant volume  = n Cv ( 3T₁ - T₁)

= n x 5/3 R X 2T₁ ( for diatomic gas Cv = 5/3 R)

= 10/3 x nRT₁

= 10/3x P₁V₁

In the second process,  Temperature must have been increased 5 times . So if initial temperature is 3T₁ then final temperature will be 15 T₁

Heat added at constant pressure in second case  

= n Cp ( 15T₁ - 3T₁)

= n x 7/3 R X 12T₁ ( For diatomic gas Cp = 7/3 R)

= 28 x nRT₁

= 28 P₁V₁

6 0
4 years ago
In which situation can you be at rest and moving at then same time
anyanavicka [17]

If you are stationary, but in/on a moving vehicle/object you can be at rest and moving at then same time.

<u>Explanation</u>:

  • A particle, when viewed from a given frame of reference, cannot be both at rest and in motion. However, in one frame of reference, a particle can be in motion whereas in another frame of reference the particle is in motion.
  • For example, if you are seated in a plane, the plane is stationary in that reference frame and the Earth moves under it, but in the reference frame of the Earth, the plane is moving concerning the Earth. When you are standing still on Earth, in your frame of reference, the Earth is stationary, and the Sun and stars move around the Earth.
  • However, in the frame of reference of the center of our solar system, the Earth orbits the Sun and the Sun are perturb slightly by the rest of the planets, but the rest of the galaxy orbits our solar system. Of course, in rest from our Galaxy, our solar system orbits a giant black hole at its center.
4 0
3 years ago
Which of the following is true? A. Drivers entering a driveway or alley should yield to bicyclists and pedestrians on the sidewa
slega [8]

Explanation:

The answer is D. Drivers must always yield to pedestrians and bicylists coming off a main road and always yield to emergency vehicles with lights on. Vehicles in a funeral must have lights on to alert other drivers of their pace and procession.

8 0
3 years ago
Other questions:
  • Can someone help me out by balancing this equation? :')
    7·1 answer
  • Electric field lines show the strength and _____ of an electric field.
    12·1 answer
  • What is a difference between a law and a hypothesis?
    6·1 answer
  • To measure the height of a building without a ruler or tape measure, an engineer drops a rock off the top of the building and fi
    8·1 answer
  • A current of 0.5A flows in a circuit. Determine the quantity of charge that crosses a point in 4 minutes
    13·1 answer
  • Which of the following statements about the impact of biotechnology on the environment is not true?
    8·2 answers
  • In which physical state would a water molecule most likely have the least energy?
    15·2 answers
  • A particle with a mass of 6.64 × 10–27 kg and a charge of +3.20 × 10–19 C is accelerated from rest through a potential differenc
    6·2 answers
  • Which is an example of an exothermic process?
    10·1 answer
  • What is the universe made of?​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!