Answer: it will take 14 years
Step-by-step explanation:
A savings account is started with an initial deposit of $600. This means that the principal P is
P = 600
It was compounded annually. This means that it was compounded once in a year. Therefore,
n = 1
The rate at which the principal was compounded is 2.1%. So
r = 2.1/100 = 0.021
The duration of time that for which the money stayed in the account is t years. So
Time = t
The formula for compound interest is expressed as
A = P(1+r/n)^nt
Where
A = total amount in the account at the end of t years. Therefore,
a) the equation to represent the amount of money in the account as a function of time in years would be
A = 600 (1+0.021/1)^1×t
A = 600 (1.021)^t
b) the amount of time it takes for the account balance to reach $800 would be
800 = 600 (1.021)^t
Dividing both sides of the equation by 600, it becomes
1.33 = (1.021)^t
t = 14
It depends on how well the rest of the class does. A safe bet is usually a 93 for an A.
Answer:
−8x − 48
Step-by-step explanation:
Answer:
steps below
Step-by-step explanation:
3.2.1 AD = DB* sin 2 = DB * sin θ .. DE // AB ∠2= θ ... (1)
By laws of sines: DB / sin ∠5 = x / sin ∠4
∠4 = θ-α ∠5 = 180°-<u>∠1</u>-∠4 = 180°-<u>∠3</u>-∠4 = 180°-(90°-θ)-(θ-α)) = 90°+α
DB = (x*sin ∠5)/sin (θ-α)
= (x* sin (90°+α)) / sin (θ-α)
AD = DB*sinθ
= (x* sin (90°+α))*sinθ / sin (θ-α)
= x* (sin90°cosα+cos90°sinα)*sinθ / sin (θ-α) .... sin90°=1, cos90°=0
= x* cosα* sinθ / sin (θ-α)
3.2.2 Please apply Laws of sines to calculate the length
Since y intercept if one, i automatically know the answer is y = 1/2x + 1. The second one