Answer:
-252.5 kJ/mol = ΔH H2O(g)
Explanation:
ΔH Fe2O3 = -825.5kJ/mol
ΔH H2 = 0kJ/mol
ΔH Fe = 0kJ/mol
Based on Hess's law, ΔH of a reaction is the sum of ΔH of products - ΔH of reactants. For the reaction:
Fe2O3(s) + 3 H2(g) →2Fe(s) + 3 H2O(g)
ΔHr = 67.9kJ/mol = 3*ΔH H2O + 2*ΔHFe - (ΔH Fe2O3 + 3*Δ H2)
67.9kJ/mol = 3*ΔH H2O + 2*0kJ/mol - (ΔH -825.5kJ/mol + 3*Δ H2)
67.9 = 3*ΔH H2O(g) + 825.5kJ/mol
-757.6kJ/mol = 3*ΔH H2O(g)
<h3>-252.5 kJ/mol = ΔH H2O(g)</h3>
me podrías repetir lo que me dijiste ayer? me borraron la respuesta y tengo curiosidad
2 in front of H2. Technically nothing in front of O2 otherwise put a 1 then a 2 in front of H2O
2H20 + 1O2 —— > 2H2O
Mirrors reflect light and lenses refract light.
Mirrors form images by reflecting all light that is incident on their surface, which allows us to see the reflections of objects in mirrors. Lenses, on the other hand, bend light and allow it to pass through them. The bending of light is used to form enlarged images, and for many other purposes as well.
Pressure<span> with </span>Height<span>: </span>pressure<span> decreases with increasing </span>altitude<span>. The </span>pressure<span> at any level in the </span>atmosphere<span> may be interpreted as the total weight of the </span>air<span> above a unit area at any </span>elevation<span>. At higher elevations, there </span>are<span> fewer </span>air<span> molecules above a given surface than a similar surface at lower levels.</span>