The compound solubility which will not be affected by a low pH in solution is AgBr.
<h3>What is pH?</h3>
pH is a measure of the acidity or basicity of any solution and according to the pH scale 0 to 6.9 shows the acidity, 7 is neutral and 7.1 to 14 shows the basicity of any solution.
- AgBr is sparingly soluble in water and not soluble in acids, so if we low the pH of the solution towards the acidity its solubility not affected.
- NiCO₃ is a basic salt and and shows solubility in the acidic medium so change in pH will affect its solubility.
- Co(OH)₂ it is also a basic compound and shows its solubility in the acidic medium and get affected when change in pH takes place.
- PbF₂ is a strong base and also shows solubility in the acidic medium easily, so get affected when change in pH takes place.
- In CuS, sulphide is basic ion and whole compound shows solubility in the acidic medium and get affected when low pH of solution takes place.
AgBr is not affected by a low pH in solution.
To know more about solubility, visit the below link:
brainly.com/question/23946616
Answer: A) Inconclusive; you would not know which of the two variables caused the change.
Explanation:
When you set up an experiment, you must make sure that you control the variables such that only one independent variable changes at a time, while all the remainder conditions (the other independent variables) are controlled (fixed).
By observing (measuring) the dependent variable, while only one independent variable changes you can understandhow such independent variable explains (determines) the dependent variable, leading to a conclusion.
Conversely, if two or more independent variables change at a time, then there is no way that you can tell how the output (dependent variable) is related with one or other of the changes of the indipendent variables. You wolud not be able to discriminate (distinguish) the effect of one or other variable, making the experiment inconclusive
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
According to the balanced chemical equation:
4 HPO₃ + 12 C → 2 H₂ + 12 CO + P₄
4 moles of HPO₃ ---gives---> 12 moles of CO
2.73 moles of HPO₃ ---gives---> ? moles of CO
so number of moles of CO =

= 8.19 moles of CO
Number of molecules of CO = number of moles * Avogadro's number
= 8.19 * (6.022 * 10²³) = 4.93 * 10²⁴ molecules
Answer:
a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹
c. 2.3 × 10⁻⁴ mol·L⁻¹; 5.5 × 10⁻⁸ mol·L⁻¹
Explanation:
a. Silver iodate
Let s = the molar solubility.
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸
E/mol·L⁻¹: s s
![K_{sp} =\text{[Ag$^{+}$][IO$_{3}$$^{-}$]} = s\times s = s^{2} = 3.0\times 10^{-8}\\s = \sqrt{3.0\times 10^{-8}} \text{ mol/L} = 1.7 \times 10^{-4} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%20%3D%20s%5Ctimes%20s%20%3D%20%20s%5E%7B2%7D%20%3D%203.0%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%20%3D%20%5Csqrt%7B3.0%5Ctimes%2010%5E%7B-8%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%201.7%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctext%7B%20mol%2FL%7D)
b. Barium sulfate
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰
I/mol·L⁻¹: 0.02 0
C/mol·L⁻¹: +s +s
E/mol·L⁻¹: 0.02 + s s
![K_{sp} =\text{[Ba$^{2+}$][SO$_{4}$$^{2-}$]} = (0.02 + s) \times s \approx 0.02s = 1.1\times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{0.02} \text{ mol/L} = 5.5 \times 10^{-9} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%20s%20%5Capprox%20%200.02s%20%3D%201.1%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B0.02%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-9%7D%20%5Ctext%7B%20mol%2FL%7D)
c. Using ionic strength and activities
(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂
The formula for ionic strength is
![\mu = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\\mu = \dfrac{1}{2} (\text{[Ba$^{2+}$]}\cdot (2+)^{2} + \text{[NO$_{3}$$^{-}$]}\times(-1)^{2}) = \dfrac{1}{2} (\text{0.02}\times 4 + \text{0.04}\times1)= \dfrac{1}{2} (0.08 + 0.04)\\\\= \dfrac{1}{2} \times0.12 = 0.06](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Csum_%7Bi%7D%20%7Bc_%7Bi%7Dz_%7Bi%7D%5E%7B2%7D%7D%5C%5C%5C%5C%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%7D%5Ccdot%20%282%2B%29%5E%7B2%7D%20%2B%20%5Ctext%7B%5BNO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%5Ctimes%28-1%29%5E%7B2%7D%29%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B0.02%7D%5Ctimes%204%20%2B%20%5Ctext%7B0.04%7D%5Ctimes1%29%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%280.08%20%2B%200.04%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes0.12%20%3D%200.06)
(ii) Silver iodate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)
![K_{sp} =\text{[Ag$^{+}$]$\gamma_{Ag^{+}}$[IO$_{3}$$^{-}$]$\gamma_{IO_{3}^{-}}$} = s\times0.75\times s \times 0.75 =0.56s^{2}= 3.0 \times 10^{-8}\\s^{2} = \dfrac{3.0 \times 10^{-8}}{0.56} = 5.3 \times 10^{-8}\\\\s =2.3 \times 10^{-4}\text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%24%5Cgamma_%7BAg%5E%7B%2B%7D%7D%24%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%24%5Cgamma_%7BIO_%7B3%7D%5E%7B-%7D%7D%24%7D%20%3D%20s%5Ctimes0.75%5Ctimes%20s%20%5Ctimes%200.75%20%3D0.56s%5E%7B2%7D%3D%203.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%5E%7B2%7D%20%3D%20%5Cdfrac%7B3.0%20%5Ctimes%2010%5E%7B-8%7D%7D%7B0.56%7D%20%3D%205.3%20%5Ctimes%2010%5E%7B-8%7D%5C%5C%5C%5Cs%20%3D2.3%20%5Ctimes%2010%5E%7B-4%7D%5Ctext%7B%20mol%2FL%7D)
(iii) Barium sulfate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq
![K_{sp} =\text{[Ba$^{2+}$]$\gamma_{ Ba^{2+}}$[SO$_{4}$$^{2-}$]$\gamma_{ SO_{4}^{2-}}$} = (0.02 + s) \times 0.32\times s\times 0.32 \approx 0.02\times0.10s\\2.0\times 10^{-3}s = 1.1 \times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{2.0 \times 10^{-3}} \text{ mol/L} = 5.5 \times 10^{-8} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%24%5Cgamma_%7B%20Ba%5E%7B2%2B%7D%7D%24%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%24%5Cgamma_%7B%20SO_%7B4%7D%5E%7B2-%7D%7D%24%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%200.32%5Ctimes%20s%5Ctimes%200.32%20%5Capprox%20%200.02%5Ctimes0.10s%5C%5C2.0%5Ctimes%2010%5E%7B-3%7Ds%20%3D%201.1%20%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B2.0%20%5Ctimes%2010%5E%7B-3%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-8%7D%20%5Ctext%7B%20mol%2FL%7D)
Answer:
The heat of combustion for the unknown hydrocarbon is -29.87 kJ/mol
Explanation:
Heat capacity of the bomb calorimeter = C = 1.229 kJ/°C
Change in temperature of the bomb calorimeter = ΔT = 2.19°C
Heat absorbed by bomb calorimeter = Q


Moles of hydrocarbon burned in calorimeter = 0.0901 mol
Heat released on combustion = Q' = -Q = -2,692 kJ
The heat of combustion for the unknown hydrocarbon :
