24 hours or one day..........................
Archimedes' principle allows us to find that the reasons why the thrust is not written when a body is in the air is:
- The thrust of air is about 800 times less than the thrust of a fluid
- In general the other forces (weight, tension) are much greater than thrust
Archimedes' principle establishes that the thrust is equal to the weight of the dislodged liquid (fluid)
B = ρ g V
Where B is the thrust, ρ and V the density and volume of the fluid, respectively, g the acceleration due to gravity.
In the attachment you have a diagram of a system in equilibrium in air and water, we can see that in the two cases for a system in equilibrium
B -W = 0
B = W
Let's find the value of the thrust in each case and compare
Used the density
Suppose that the volume of the two bodies is the same
r
We can see that the thrust in air or other gas is about 800 times less than the thrust in liquids. This is the reason that in many problems the thrust is not written when the body is in the air.
In conclusion, using Archimedes' principle, we find that the reason why the healed thrust is not written for a body is in the air is:
- The thrust of air is about 800 times less than the thrust of a fluid
- In general the other forces (weight, tension) are much greater than thrust
Learn more about Archimedes' principle here:
brainly.com/question/787619
Answer:
Electrons are found in shells or orbitals that surround the nucleus of an atom. Protons and neutrons are found in the nucleus. They group together in the center of the atom.
Explanation:
-----
Answer:
2.11 g hydrobromic acid (correct to 3SF)
Explanation:
Molecular formula of hydrobromic acid = C2H5BrO2
mass of C2H5BrO2 = 140.96g
Beginning with what we're given, 9.03*10^21 we then make a conversion by using Avegadro's number which is 6.02*10^23 per mole (Oct. 23 at 6:02 am is national mole day :) Then, we need to convert out of moles, 140.96g hydrombromic acid per mole.
It looks like this:
9.03*10^21 molecules • (1 mol C2H5BrO2 / 6.02*10^23 molecules) • (140g C2H5BrO2 / 1 mol) = 2.1144 g C2H5BrO2