Answer:
His first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force. This is normally taken as the definition of inertia.
Explanation:
Answer:
(A) As it moves farther and farther from Q, its speed will keep increasing.
Explanation:
When a positive charge Q is fixed on a horizontal frictionless tabletop and a second charge q is released near to it then according to the Coulombs law the force acting on it decreases with the square of the distance between them.
Mathematically:

where:
r = distance between the charges
permittivity of free space
By the Newtons' second law of motion if the we know that the acceleration is directly proportional to the force applied. So as the distance between the charges increases the its acceleration also decreases therefore now the charge feels less acceleration but still continues to accelerate with a fading magnitude.
To find the change in centripetal acceleration, you should first look for the centripetal acceleration at the top of the hill and at the bottom of the hill.
The formula for centripetal acceleration is:
Centripetal Acceleration = v squared divided by r
where:
v = velocity, m/s
r= radium, m
assuming the velocity does not change:
at the top of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 0.25 m
= 81 m/s^2
at the bottom of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 1.25 m
= 16.2 m/s^2
to find the change in centripetal acceleration, take the difference of the two.
change in centripetal acceleration = centripetal acceleration at the top of the hill - centripetal acceleration at the bottom of the hill
= 81 m/s^2 - 16.2 m/s^2
= 64.8 m/s^2 or 65 m/s^2
Answer:
put the car on fire
Explanation:
if you put it on fire you would have a lot of light now
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s