No worry’s I am here to help
As it was explained in the Introductory Article on the Electromagnetic Spectrum, electromagnetic radiation can be described as a stream of photons, each traveling in a wave-like pattern, carrying energy and moving at the speed of light. In that section, it was pointed out that the only difference between radio waves, visible light and gamma rays is the energy of the photons. Radio waves have photons with the lowest energies. Microwaves have a little more energy than radio waves. Infrared has still more, followed by visible, ultraviolet, X-rays and gamma rays.
That should be able to help answer your question :)
I think that it’s false I might be wrong but I want the points
<h2>QUESTION:- It is easier to lift the same load by using three pulley system than by using two-pulley system.</h2>
<h2>ANSWER:- IN CASE OF IDEAL PULLEY SYSTEM</h2>
<h2>REASON:- </h2>
Logic behind is lies behind the mechanical advantage of the provided bt the Pulley system.
as if we calculate the mechanical advantage of the 2 Pulley system we will have the value 2
And if we will calculate the mechanical advantage of the 3 pulley system then we will get the value of 3
so due to extra mechanical advantage we feel it easy to move with 3 pulley system then 2 Pulley system

Answer:
4.9 x 10^-19 J, 2.7 x 10^-19 J
Explanation:
first wavelength, λ1 = 410 nm = 410 x 10^-9 m
Second wavelength, λ2 = 750 nm = 750 x 10^-9 m
The relation between the energy and the wavelength is given by
E = h c / λ
Where, h is the Plank's constant and c be the velocity of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
So, energy correspond to first wavelength
E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J
E1 = 4.9 x 10^-19 J
So, energy correspond to second wavelength
E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J
E2 = 2.7 x 10^-19 J