The final volume of the gas is 144.25 L
Explanation:
For an ideal gas kept at constant pressure, the work done by the gas on the surroundings is given by

where
p is the pressure of the gas
is the initial volume
is the final volume
For the gas in the cylinder in this problem,
p = 2.00 atm

And we also know the work done,
W = 288 J
So we can solve the equation for
, the final volume:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
alpha=53.56rad/s
a=5784rad/s^2
Explanation:
First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

Now, we can calculate the angular acceleration (w0=0rad/s)


with this value we can compute the angular velocity

and the tangential velocity of point B, and then the acceleration of point B:

hope this helps!!
Answer:
Explanation:
According to the property of a conductor, the entire charge will reside on the outer surface of the conductor, there is no charge on the inner side of the conductor. As the uncharged metal ball touches the inner surface of the conductor, it does not attain any charge as the inner side of the conductor has no charge.
So option (c) is correct.
The solution would be like
this for this specific problem:
V^2 = 2AS = 2FS/M
V = sqrt(2FS/M) =
sqrt(2*105*.75/.087) = 44.52817783 = 42.5 mps
So the speed of the arrow as it leaves the bow
is 42.5 mps.
I am hoping that this answer has
satisfied your query and it will be able to help you in your endeavor, and if
you would like, feel free to ask another question.
Kinetic Energy = 1/2mv^2
m= 1200kg
v= 24 m/s
KE = 1/2 (1200kg)(24m/s)^2 = 345,600 N