At the end of one full time period, the ant has returned to where it was at the beginning of the time period. Its displacement is <em>zero</em>.
To solve this problem we will apply the concepts related to the linear kinematic movement. We will start by finding the speed of the body from time and the acceleration given.
Through the position equations we will calculate the distance traveled.
Finally, using this same position relationship and considering the previously found speed, we can determine the time to reach your goal.
For time (t) and acceleration (a) we have to,

The velocity would be,

Now the position is,



Now with the initial speed and position found we will have the time is,



Solving the polynomian we have,

Therefore the rocket will take to hit the ground around to 4.56min
Answer:
Explanation:
There's an easy way to answer this and then an easier way. I'll do both since I'm not sure what you're doing this for: physics or calculus. Calculus is the easier way, btw.
Going with the physics version first, here's what we know:
a = -9.8 m/s/s
v₀ = 3.75 m/s
t = ??
That's not a whole lot...at least not enough to directly solve the problem. What we have to remember here is that at the max height of a parabolic path, the final velocity is 0. So we can add that to our info:
v = 0 m/s. Use the one-dimensional equation that utilizes all that info and allows us to solve for time:
v = v₀ +at and filling in:
0 = 3.75 + (-9.8)t and
-3.75 = -9.8t so
t = .38 seconds. This is how long it takes to get to its max height. Another thing we need to remember (which is why calculus is so much easier!) is that at the halfway point of a parabolic path (the max height), the object has traveled half the time it takes to make the whole trip. In other words, if .38 is how long it takes to go halfway, then 2(.38) is how long the whole trip takes:
2(.38) = .76 seconds. Now onto the calculus way:
The position function is
The first derivative of this is the velocity function and, knowing that when the velocity is 0, the time is halfway gone, we will find the velocity function and then set it equal to 0 and solve for t:
v(t) = -9.8t + 3.75 and
0 = -9.8t + 3.75 and
-3.75 = -9.8t so
t = ,38 and multiply that by 2 to find the time the whole trip took:
2(.38) = .76 seconds.
Work is force times distance. So here we have
W=(5000N)x(3000m)=1.5x10^7J
Or 15MJ (megajoules)
Answer: informative array
Explanation:
"The periodic table of elements arranges all of the known chemical elements in an informative array. Elements are arranged from left to right and top to bottom in order of increasing atomic number. Order generally coincides with increasing atomic mass. The rows are called periods."
https://www.livescience.com/25300-periodic-table.html