Answer:
B
Explanation:
bonding is a process of two different atoms sharing electrons for stability and these electrons are attracted by one atom losing it's electrons to another
Answer:
it is true.....................
Answer:
Percent yield = 89.1%
Explanation:
Based on the equation:
Cl₂ + 2KI → 2KCl + I₂
<em>1 mole of Cl₂ reacts with 2 moles of KI to produce to moles of KCl</em>
<em />
To solve this quesiton we must find the moles of each reactant in order to find the limiting reactant. With the limiting reactant we can find the moles of KCl and the mass:
<em>Moles Cl₂:</em>
8x10²⁵ molecules * (1mol / 6.022x10²³ molecules) = 133 moles
<em>Moles KI -Molar mass: 166.0028g/mol-</em>
25g * (1mol / 166.0028g) = 0.15 moles
Here, clarely, the KI is the limiting reactant
As 2 moles of KI produce 2 moles of KCl, the moles of KCl produced are 0.15 moles. The theoretical mass is:
0.15 moles * (74.5513g / mol) =
11.2g KCl
Percent yield is: Actual yield (10.0g) / Theoretical yield (11.2g) * 100
<h3>Percent yield = 89.1%</h3>
Aluminum is one of the main factors that reduce plant growth in acid soils. Although it is generally harmful to plants in soils with a neutral medium, the concentration of positive aluminum ions in acid soils increases and malfunctions in root and function growth.
Most acid soils are saturated with aluminum rather than hydrogen ions. Soil acidity is the result of hydrolysis of aluminum compounds. This principle (lime correction) to determine the degree of base saturation in the soil has become the basis of the methods used in soil testing laboratories to determine the lime requirements for soil. Application of lime to soil reduces the toxicity of aluminum to plants. Note This connector loads slowly.
Adaptation of wheat to allow aluminum to be carried out is due to the fact that aluminum releases organic compounds that in turn combine with harmful aluminum cations. It is believed that sorghum has the same endurance. The first genes found to withstand aluminum were found in wheat. Aluminum sulphide bearing has been found to be governed by an individual gene, such as in wheat. This is not the case in all plants.
We will use the expression for freezing point depression ∆Tf
∆Tf = i Kf m
Since we know that the freezing point of water is 0 degree Celsius, temperature change ∆Tf is
∆Tf = 0C - (-3°C) = 3°C
and the van't Hoff Factor i is approximately equal to 2 since one molecule of KCl in aqueous solution will produce one K+ ion and one Cl- ion:
KCl → K+ + Cl-
Therefore, the molality m of the solution can be calculated as
3 = 2 * 1.86 * m
m = 3 / (2 * 1.86)
m = 0.80 molal