Hydrogen to be more precise protium which is an isotope of hydrogen containing one proton and one electron. It is considered to be very stable which explains it's abundance everywhere. However under extreme conditions like in the sun, it undergoes nuclear fusion to form helium. So in conclusion, under normal circumstances Protium is considered to be very stable however under extreme circumstances it is radioactive. Does that answer your question?
Thus problem is providing us with the mass of iron (III) oxide as 12.4 g so the moles are required and found to be 0.0776 mol after the calculations:
<h3>Mole-mass relationships:</h3>
In chemistry, we use mole-mass relationships in order to calculate grams from moles and vice versa. In this case, since we are given the mass of iron (III) oxide as 12.4 g one can calculate the moles by firstly quantifying its molar mass:

Then, we prepare a conversion factor in order to cancel out the grams and thus, get moles:

Learn more about mole-mass relationships: brainly.com/question/18311376
I will assume that the sign ? between the C and the CCH3 is a triple bond, and I will represent it by three vertical lines |||
So the reaction is:
<span>CH3CH2CH2CH2C ||| CCH3+2Br2 ---->
This is a typical reaction known as halogenation of alkines.
This is an addition reaction, i.e. the alkyne undergoes an addition of the Br2 (and it also happens with Cl2) to the triple bond to form a tetra halide.
.
Br Br
</span> | |
<span><span>CH3CH2CH2CH2C ||| CCH3+2Br2 ----> CH3 CH2 CH2 CH2 C - C</span> - CH3
| |
Br Br
</span>